Publications

Detailed Information

Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells

DC Field Value Language
dc.contributor.authorShin, Dongha-
dc.contributor.authorPark, Jong Bo-
dc.contributor.authorKim, Yong-Jin-
dc.contributor.authorKim, Sang Jin-
dc.contributor.authorKang, Jin Hyoun-
dc.contributor.authorLee, Bora-
dc.contributor.authorCho, Sung-Pyo-
dc.contributor.authorHong, Byung Hee-
dc.contributor.authorNovoselov, Konstantin S.-
dc.date.accessioned2021-01-31T08:34:28Z-
dc.date.available2021-01-31T08:34:28Z-
dc.date.created2018-09-28-
dc.date.issued2015-02-
dc.identifier.citationNature Communications, Vol.6, p. 6068-
dc.identifier.issn2041-1723-
dc.identifier.other56754-
dc.identifier.urihttps://hdl.handle.net/10371/172250-
dc.description.abstractFormation, evolution and vanishing of bubbles are common phenomena in nature, which can be easily observed in boiling or falling water, carbonated drinks, gas-forming electrochemical reactions and so on. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in the liquid phase. Here, we demonstrate for the first time that the nanobubbles in water encapsulated by graphene membrane can be visualized by in-situ ultra-high vacuum transmission electron microscopy. Our microscopic results indicate two distinct growth mechanisms of merging nanobubbles and the existence of a critical radius of nanobubbles that determines the unusually long stability of nanobubbles. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation.-
dc.language영어-
dc.publisherNature Publishing Group-
dc.titleGrowth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells-
dc.typeArticle-
dc.contributor.AlternativeAuthor홍병희-
dc.identifier.doi10.1038/ncomms7068-
dc.citation.journaltitleNature Communications-
dc.identifier.wosid000350196300001-
dc.identifier.scopusid2-s2.0-84923115970-
dc.citation.startpage6068-
dc.citation.volume6-
dc.identifier.sci000350196300001-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorHong, Byung Hee-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusATOMIC-FORCE MICROSCOPY-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusBUBBLE-
dc.subject.keywordPlusFILMS-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Physics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share