Publications

Detailed Information

Biocompatible polymeric nanocomplexes as an intracellular stimuli-sensitive prodrug for type-2 diabetes combination therapy

Cited 26 time in Web of Science Cited 27 time in Scopus
Authors

Wang, Feng-Zhen; Xie, Zhi-Shen; Xing, Lei; Zhang, Bing-Feng; Zhang, Jia-Liang; Cui, Peng-Fei; Qiao, Jan-Bin; Shi, Kun; Cho, Chong-Su; Cho, Myung-Haing; Xu, Xiaojun; Li, Ping; Jiang, Hu-Lin

Issue Date
2015-12
Publisher
Pergamon Press Ltd.
Citation
Biomaterials, Vol.73, pp.149-159
Abstract
Combination therapy is usually considered as a promising strategy owing to its advantages such as reduced doses, minimized side effects and improved therapeutic efficiency in a variety of diseases including diabetes. Here we synthesized a new highly intracellular stimuli-sensitive chitosan-graft-metformin (CS-MET) prodrug by imine reaction between oxidative chitosan and metformin for type 2 diabetes (T2D) therapy. Hypothetically, CS-MET functions dually as an anti-diabetes prodrug as well as a gene delivery vector without superfluous materials. CS-MET formed nanocomplexes with therapeutic gene through electrostatic interactions and entered cells by Organic Cation Transporter (OCT)-independent endocytosis. The incorporation of metformin into chitosan has been found to increase endosomal escape via the proton sponge effect. When vector carrying a short-hairpin RNA (shRNA) silencing sterol regulatory element-binding protein (SREBP), a major transcription factor involved in de novo lipogenisis, it reduced the SREBP mRNA and proteins efficiently. Furthermore, by intraperitoneal injection, CS-MET/shSREBP nanocomplexes effectively knocked down SREBP in livers of western-type diet (WD)-induced obese C57BL/6J mice, markedly reversed insulin resistance and alleviated the fatty liver phenotype without obvious toxic effects. Thus we were able to show that the intracellular stimuli-sensitive CS-MET prodrug renders a potential platform to increase the anti-diabetes activity with synergistic enhancement of gene therapy. (C) 2015 Elsevier Ltd. All rights reserved.
ISSN
0142-9612
URI
https://hdl.handle.net/10371/172344
DOI
https://doi.org/10.1016/j.biomaterials.2015.09.013
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Nanotoxicology, Veterinary Toxicology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share