Publications
Detailed Information
Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage
Cited 8 time in
Web of Science
Cited 11 time in Scopus
- Authors
- Issue Date
- 2015-06
- Publisher
- Kluwer Academic Publishers
- Citation
- Cell Biology and Toxicology, Vol.31 No.3, pp.149-159
- Abstract
- In the present study, we differentiated hepatocyte-like cells (HLCs) from human adipose tissue-derived mesenchymal stem cells (AT-MSCs). The hepatic differentiation was confirmed by increases in hepatic proteins or genes, the cytochrome P450 (CYP) activities, albumin secretion, and glycogen storage. To determine the developmental toxic effect of arsanilic acid (Ars) and acetaminophen (AAP) on the hepatic development, the differentiating cells were treated with the test chemicals (below IC12.5) from day 4 to day 13. The enzymatic activities of lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) did not significantly differ in response to Ars treatment. AAP treatment increased the activities of all enzymes in a dose-dependent manner, significantly at concentrations of 2.5 and 5 mM of AAP. On the expressions of hepatic genes for Ars, the expressions were significantly inhibited by more than 0.5 mM for Albumin (ALB), but only 2.5 mM for alpha-feto protein (AFP). In the AAP-treated group, the expressions of ALB and AFP were significantly decreased at the concentrations exceeding 0.625 mM. The activities of CYP3A4 were not changed by both treatments. The activities of CYP1A2 were increased by AAP, whereas it was decreased by Ars treatment. In conclusion, AAP could cause serious adverse effects during the hepatic development as compared to Ars.
- ISSN
- 0742-2091
- Files in This Item:
- There are no files associated with this item.
- Appears in Collections:
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.