Browse

Forum original research communication - Capsaicin induces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H: quinone oxidoreductase as a potential target

Cited 92 time in Web of Science Cited 99 time in Scopus
Issue Date
2007-12
Citation
Antioxidants and Redox Signaling, Vol.9 No.12, pp.2087-2098
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a major pungent ingredient of red pepper, is reported to have antimutagenic and anticarcinogenic properties. However, the mechanisms underlying its chemoprotective effects remain largely unresolved. In the present study, we found that capsaicin induced expression of heme oxygenase-1 (HO-1) in HepG2 cells. Capsaicin treatment resulted in a transient increase in the phosphorylation of Akt and subsequently nuclear translocation of NF-E2-related factor 2 (Nrf2), enhancing its binding to antioxidant response element (ARE). HepG2 cells treated with capsaicin exhibited increased production of reactive oxygen species (ROS). Prior exposure of cells to N-acetyl-L-cysteine blocked not only the ROS production but also the nuclear translocation of Nrf2 and its ARE binding, as well as HO-1 induction by capsaicin. Immunoblot analysis showed that whereas the level of HO-1 protein was elevated, that of NAD(P) H: quinone oxidoreductase (NQO1) was decreased after the treatment with capsaicin or the inhibitor of NQO1, dicumarol. We hypothesize that quinone metabolites or other reactive forms of capsaicin may bind covalently to NQO1 and thereby inhibit its activity, leading to production of ROS. This, in turn, would trigger the activation of Akt via phosphorylation, increase the nuclear translocation and ARE binding of Nrf2, and upregulate the expression of HO-1.
ISSN
1523-0864
URI
https://hdl.handle.net/10371/172565
DOI
https://doi.org/10.1089/ars.2007.1827
Files in This Item:
There are no files associated with this item.
Appears in Collections:
Graduate School of Convergence Science and Technology (융합과학기술대학원)Dept. of Molecular and Biopharmaceutical Sciences (분자의학 및 바이오제약학과)Journal Papers (저널논문_분자의학 및 바이오제약학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse