Browse

Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis

Cited 24 time in Web of Science Cited 25 time in Scopus
Authors
Choi, Jin Woo; Um, Jung Yeon; Kundu, Joydeb Kumar; Surh, Young-Joon; Kim, Sunghoon
Issue Date
2009-09
Citation
Carcinogenesis, Vol.30 No.9, pp.1638-1644
Abstract
Aminoacyl-transfer ribonucleic acid (tRNA) synthetases-interacting multifunctional protein (AIMP) 2 is a factor associated with the macromolecular protein synthesis machinery consisting of nine different aminoacyl-tRNA synthetases and three non-enzymatic factors. However, it was shown to work as a multifaceted regulator through the versatile interactions with diverse signal mediators. For instance, it can mediate pro-apoptotic response to DNA damage and tumor necrosis factor-alpha (TNF-alpha) stimulus and growth-arresting signal by transforming growth factor (TGF)-beta. Considering that these pathways are critically implicated in the control of tumorigenesis, AIMP2 is expected to work as a potent tumor suppressor with broad coverage against different cancer types. Here we investigated whether AIMP2 would give gene dosage effect on its pro-apoptotic and anti-proliferative activities using the wild-type, hetero- and homozygous AIMP2 cells and whether AIMP2 would be critical in preventing tumorigenesis using different in vivo tumor models. Both the apoptotic responses to DNA damage and TNF-alpha and sensitivity to growth arresting TGF-beta signal were reduced in AIMP2 hetero- and homozygous cells compared with the wild-type cells in dose-dependent manner. In all the in vivo carcinogenesis experiments, reduction of AIMP2 level in heterozygous AIMP2 mice provided higher susceptibility to tumor formation. Thus, this work proves the functional significance of AIMP2 in determination of cell proliferation and death, and as a haploinsufficient tumor suppressor.
ISSN
0143-3334
URI
https://hdl.handle.net/10371/172653
DOI
https://doi.org/10.1093/carcin/bgp170
Files in This Item:
There are no files associated with this item.
Appears in Collections:
Graduate School of Convergence Science and Technology (융합과학기술대학원)Dept. of Molecular and Biopharmaceutical Sciences (분자의학 및 바이오제약학과)Journal Papers (저널논문_분자의학 및 바이오제약학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse