Browse

Induction of endoplasmic reticulum stress under endotoxin tolerance increases inflammatory responses and decreases Pseudomonas aeruginosa pneumonia

Cited 2 time in Web of Science Cited 2 time in Scopus
Authors
Kim, Sena; Joe, Yeonsoo; Park, Se-Ung; Jeong, Sun Oh; Kim, Jin-Kyung; Park, Seong Hoon; Pae, Hyun-Ock; Surh, Young-Joon; Shin, Jaekyoon; Chung, Hun Taeg
Issue Date
2018-11
Citation
Journal of Leukocyte Biology, Vol.104 No.5, pp.1003-1012
Keywords
CLPendotoxin toleranceER stressGSK-3TUDCA
Abstract
Endotoxin tolerance develops in the late phase of sepsis to protect cells from an early hyperinflammatory response. Nonetheless, because it induces an immunosuppressive environment, patients with sepsis in its late phase are affected by secondary infections, particularly bacterial pneumonia. Here, we showed that induction of endoplasmic reticulum (ER) stress leads to activation of glycogen synthase kinase 3 (GSK-3) and X-box-binding protein 1 (XBP-1) in an inositol-requiring enzyme 1 (IRE1)-mediated manner, which in turn restores the inflammatory response in endotoxin-tolerant macrophages. Animal and in vitro models of endotoxin tolerance were studied along with a model of LPS-induced endotoxin tolerance and a model of cecal ligation and puncture (CLP)-induced endotoxin tolerance. To detect the suppressed inflammatory response during endotoxin tolerance, inflammatory-cytokine expression levels were measured by quantitative real-time PCR and an ELISA. Our research revealed that induction of ER stress alleviated lung injury in a septic host infected with Pseudomonas aeruginosa via the activation of GSK-3 and XBP-1 in an IRE1-mediated manner. Consequently, in the lungs of the septic host infected with P. aeruginosa, symptoms of pneumonia improved and the infecting bacteria were cleared. Thus, for septic patients, determination of immune status may guide the selection of appropriate immunomodulation, and ER stress can be a novel therapeutic strategy restoring the immune response in patients with endotoxin tolerance.
ISSN
0741-5400
URI
https://hdl.handle.net/10371/172792
DOI
https://doi.org/10.1002/JLB.3A0317-106RRR
Files in This Item:
There are no files associated with this item.
Appears in Collections:
Graduate School of Convergence Science and Technology (융합과학기술대학원)Dept. of Molecular and Biopharmaceutical Sciences (분자의학 및 바이오제약학과)Journal Papers (저널논문_분자의학 및 바이오제약학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse