Browse

Differential cell death induced by salsolinol with and without copper: Possible role of reactive oxygen species

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
Kim, Hyun-Jung; Soh, Yunjo; Jang, Jung-Hee; Lee, Jeong-Sang; Oh, Young J.; Surh, Young-Joon
Issue Date
2001-09
Citation
Molecular Pharmacology, Vol.60 No.3, pp.440-449
Abstract
Salsolinol (SAL), a novel dopaminergic catechol tetrahydroisoquinoline neurotoxin, has been speculated to contribute to the etiology of Parkinson's disease and neuropathology of chronic alcoholism. Our previous studies have demonstrated that SAL induces strand scission in oX174 supercoiled DNA and oxidative base modification in calf thymus DNA in the presence of cupric ion. We now report that treatment of rat pheochromocytoma (PC12) cells with SAL causes reduced viability, which was exacerbated by Cu2+. The copper chelator bathocuproinedisulfonic acid ameliorated cytotoxicity induced by SAL and Cu2+. N-Acetyl-L-cysteine and reduced glutathione protected against SAL- plus Cu2+-mediated PC12 cell death. Cells exposed to SAL underwent apoptosis, as revealed by characteristic morphological and biochemical changes. SAL treatment resulted in increased levels of Bax with a concomitant decrease in expression of Bcl-X-L. Furthermore, SAL rapidly activated c-Jun N-terminal kinase, whereas the activity of extracellular signal-regulated protein kinase remained unchanged. Transfection with Bcl-X-L or Bcl-2 led to protection against SAL-mediated PC12 cell death. Although SAL alone could cause apoptotic death in PC12 cells, cells treated with SAL together with Cu2+ became necrotic. Cells exposed to both SAL and Cu2+ exhibited higher levels of intracellular reactive oxygen species, malondialdehyde, and 8-oxo-7,8-dihydro-2'-deoxyguanosine than did those treated with SAL alone. These results suggest that copper accelerates redox cycling of SAL, leading to massive production of reactive oxygen species, which can divert the SAL-induced cell death to necrosis.
ISSN
0026-895X
URI
https://hdl.handle.net/10371/172833
Files in This Item:
There are no files associated with this item.
Appears in Collections:
Graduate School of Convergence Science and Technology (융합과학기술대학원)Dept. of Molecular and Biopharmaceutical Sciences (분자의학 및 바이오제약학과)Journal Papers (저널논문_분자의학 및 바이오제약학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse