Browse

Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-κB activation

Cited 232 time in Web of Science Cited 259 time in Scopus
Authors
Chun, Kyung-Soo; Keum, Young-Sam; Han, Seong-Su; Song, Yong Sang; Kim, Su-Hyeong; Surh, Young-Joon
Issue Date
2003-09
Citation
Carcinogenesis, Vol.24 No.9, pp.1515-1524
Abstract
Recently, there have been considerable efforts to search for naturally occurring substances for the intervention of carcinogenesis. Many components derived from dietary or medicinal plants have been found to possess substantial chemopreventive properties. Curcumin, a yellow coloring ingredient of turmeric (Curcuma longa L., Zingiberaceae), has been shown to inhibit experimental carcinogenesis and mutagenesis, but molecular mechanisms underlying its chemopreventive activities remain unclear. In the present work, we assessed the effects of curcumin on 12-O- tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2) in female ICR mouse skin. Topical application of the dorsal skin of female ICR mice with 10 nmol TPA led to maximal induction of cox-2 mRNA and protein expression at similar to1 and 4 h, respectively. When applied topically onto shaven backs of mice 30 min prior to TPA, curcumin inhibited the expression of COX-2 protein in a dose-related manner. Immunohistochemical analysis of TPA-treated mouse skin revealed enhanced expression of COX-2 localized primarily in epidermal layer, which was markedly suppressed by curcumin pre-treatment. Curcumin treatment attenuated TPA- stimulated NF-kappaB activation in mouse skin, which was associated with its blockade of degradation of the inhibitory protein IkappaBalpha and also of subsequent translocation of the p65 subunit to nucleus. TPA treatment resulted in rapid activation via phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein (MAP) kinases, which are upstream of NF-kappaB. The MEK1/2 inhibitor U0126 strongly inhibited NF-kappaB activation, while p38 inhibitor SB203580 failed to block TPA-induced NF-kappaB activation in mouse skin. Furthermore, U0126 blocked the IkappaBalpha phosphorylation by TPA, thereby blocking the nuclear translocation of NF-kappaB. Curcumin inhibited the catalytic activity of ERK1/2 in mouse skin. Taken together, suppression of COX-2 expression by inhibiting ERK activity and NF-kappaB activation may represent molecular mechanisms underlying previously reported antitumor promoting effects of this phytochemical in mouse skin tumorigenesis.
ISSN
0143-3334
URI
https://hdl.handle.net/10371/172866
DOI
https://doi.org/10.1093/carcin/bgg107
Files in This Item:
There are no files associated with this item.
Appears in Collections:
Graduate School of Convergence Science and Technology (융합과학기술대학원)Dept. of Molecular and Biopharmaceutical Sciences (분자의학 및 바이오제약학과)Journal Papers (저널논문_분자의학 및 바이오제약학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse