Publications

Detailed Information

Experimental and Numerical Study on Seismic Behavior of Piles in Sloping Ground : 진동대 실험 및 수치해석을 통한 경사지반 말뚝의 지진거동 분석

DC Field Value Language
dc.contributor.advisor김성렬-
dc.contributor.authorTran, Nghiem Xuan-
dc.date.accessioned2021-11-30T01:53:41Z-
dc.date.available2021-11-30T01:53:41Z-
dc.date.issued2021-02-
dc.identifier.other000000164793-
dc.identifier.urihttps://hdl.handle.net/10371/175082-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000164793ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 건설환경공학부, 2021. 2. 김성렬.-
dc.description.abstract과거 중진 또는 강진이 발생하였을때 경사지반에 설치된 말뚝 지지구조물에 많은 피해가 발생하였는데 이를 분석하려면 지반-말뚝 동적상호작용 그리고 말뚝기초의 운동학적 힘과 관성력의 상호작용 연구가 중요하다. 그러므로, 본 연구에서는 다양한 동적 원심모형실험과 수치해석을 수행하여 경사지반에 설치된 말뚝의 지진거동을 분석하였다.
연구대상은 말뚝기초로 지지되는 잔교식 안벽으로서, 말뚝기초는 사질토 지반에 근입되고 말뚝선단은 단단한 암반층에 근입된 조건을 적용하였다. 단일말뚝과 무리말뚝 등 말뚝조건, 수평지반과 경사지반 등 지반조건, 입력파 조건 등을 변화시키며 다양한 조건의 원심모형실험을 수행하였다. 실험결과 지반경사가 말뚝의 휨모멘트와 영구변위 발생에 큰 영향을 주는 것으로 나타났다. 말뚝과 지반 사이의 변위 위상관계를 이용하여 운동학적 힘과 관성력의 상호작용을 분석하였다. 그 결과, 말뚝-지반 간의 변위 위상관계에 의해 운동학적 힘은 단일말뚝의 경우 말뚝의 수평 지지력을 증가시키는 저항력으로 작용하였고 무리말뚝의 경우 말뚝에 추가하중으로 작용하였다.
이러한 동적 상호작용을 수치해석적으로 모사하기 위하여 말뚝-지반 인터페이스 모델을 제안하였다. 우선, 3차원 수치모델에서 말뚝을 수평으로 정적으로 이동시키며 말뚝-지반 인터페이스에 발생하는 구속압과 응력값을 분석하여 수평지반과 경사지반에 대한 인터페이스 물성값을 제안하였다. 동적 원심모형실험의 수치 모델링에서 제안된 인터페이스를 적용한 결과 수치해석 결과가 원심모형실험 결과를 잘 모사할 수 있는 것으로 나타났다. 그리고, 검증된 수치모델링을 이용하여 추가적인 변수연구를 수행하고 지반경사와 말뚝 배치가 잔교식 안벽의 지진거동에 미치는 영향을 분석하였다.
최종적으로, 동적 원심모형실험 결과로부터 동적 p–y 곡선을 산정하고 지반 경사가 동적 p–y 곡선에 미치는 영향을 분석하였다. 그리고, 원심모형실험과 동적 수치해석 결과를 종합하고 기존에 제시된 p–y 곡선을 수정하여 경사지반에 적용할 수 있는 동적 p–y 곡선을 새롭게 제안하였다. 이 p–y 곡선은 하중재하 방향이 경사하향 방향과 경사상향 방향일 때 서로 다른 지반반력값을 적용하였다. 제안된 동적 p–y 곡선을 적용하여 등가정적해석을 수행한 결과 원심모형실험 결과를 잘 예측할 수 있는 것으로 나타났다.
-
dc.description.abstractDuring past medium and strong earthquake events, the occurrence of numerous damages to pile-supported structures founded in sloping ground has raised an increasing demand in researches of dynamic soil–pile interaction and kinematic–inertial interaction of pile foundations. Therefore, the studies presented in this dissertation aim to extensively investigate the seismic behavior of different types of piles embedded in the slope by conducting a series of dynamic centrifuge tests and numerical simulations. The experimental and numerical models target a segment of a pile-supported wharf, which is penetrated through a sandy ground and firmly mounted on a rock layer. The built-up models consist of single and group piles installed in dry cohesionless soil and are excited with different input motions at the base. Experimental results primarily indicate that the presence of a slope induces a significant effect on the bending moment response and permanent displacement of the pile-supported structure. The kinematic–inertial interaction is analyzed on the basis of the phase response of the models measured in the centrifuge tests. According to the analysis of phase relation, it is suggested that the kinematic force acts as resistance to the single pile and additional load to the group pile. A numerical procedure is proposed to evaluate the slope effect on the stress transfer at the soil–pile interface by formulating the relationship between the mobilized interface and confining stresses. Results of the numerical analysis of the stress transfer are implemented in a full 3D numerical model, which is constructed to simulate the responses of pile-supported structures obtained from the centrifuge tests. Effects of slope and pile foundation configuration on the seismic behavior of the pile-supported structure are further explored through a parametric study on the validated numerical models. Finally, the slope effect on the dynamic p–y backbone curve is evaluated with the reference to existing curves by combining the experimental and numerical analyses. The soil resistance is different at both sides of the pile wall depending on the loading direction, i.e., downslope or upslope direction. An empirical factor is introduced to account for the slope effect on the dynamic p–y backbone curve, which is formed by fitting peak points of the dynamic p–y loops with a hyperbolic function. Pseudo-static analyses applying the suggested dynamic p–y backbone curve show good agreement with the dynamic centrifuge test data.-
dc.description.tableofcontentsList of Tables vii
List of Figures ix
List of Notation and Abbreviation xvii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Objectives 5
1.3 Scope of work 6
1.4 Organization of dissertation 7
Chapter 2. Literature Review 9
2.1 Overview 9
2.2 Experimental study 10
2.2.1 Overall seismic behavior of pile-supported structures in slope 10
2.2.2 Kinematic–inertial interaction 13
2.2.3 Experimental dynamic p–y curve and slope effect 17
2.3 Numerical study 24
2.3.1 Numerical simulation of pile-supported structures in slope 24
2.3.2 Numerical modeling of pile and soil–pile interface 29
2.3.3 Evaluation of lateral soil–pile interface spring 35
2.4 Summary and research gap 37
Chapter 3. Experimental Study on Seismic Behavior of Piles in Sloping Ground 39
3.1 Overview 39
3.2 Dynamic centrifuge tests 39
3.2.1 Equipment 39
3.2.2 Test layout 40
3.2.3 Model soil 43
3.2.4 Test procedure and input motion 46
3.3 Evaluation of displacement phase difference 47
3.3.1 Concept 47
3.3.2 Calculation of pile displacement 49
3.4 Test results and analyses 51
3.4.1 Measured deck responses 52
3.4.2 Measured pile responses 53
3.4.3 Displacement phase difference 57
3.4.4 Discussion on equivalent cantilever model 61
3.4.5 Summary 68
Chapter 4. Numerical Evaluation of Lateral Soil–Pile Interface Spring for Piles in Cohesionless Soil 71
4.1 Overview 71
4.2 Computational platform 72
4.3 Numerical analysis of lateral soil–pile interface spring for piles in level ground 73
4.3.1 Numerical representation of soil–pile interface spring 73
4.3.2 Numerical modeling and simulation 76
4.3.3 Simulated results and analyses 79
4.3.4 Influence factors on lateral interface-force ratio 82
4.3.5 Discussion on different lateral loading type 84
4.4 Numerical analysis of lateral soil–pile interface spring for piles in sloping ground 86
4.4.1 Numerical modeling and simulation 86
4.4.2 Simulated results and analyses 88
4.5 Evaluation of lateral soil–pile interface spring 90
4.5.1 Strength parameter 90
4.5.2 Stiffness parameter 92
4.5.3 Cyclic nature 93
4.6 Summary 97
Chapter 5. Numerical Study on Seismic Behavior of Piles in Cohesionless Soil 101
5.1 Overview 101
5.2 Numerical simulation of dynamic centrifuge tests on piles in level ground 102
5.2.1 Numerical modeling 102
5.2.2 Constitutive and damping models 104
5.2.3 Simulation procedure and dynamic timestep 108
5.2.4 Simulated results and comparisons with centrifuge tests 110
5.2.5 Discussion on stiffness of lateral soil–pile interface spring 119
5.3 Numerical simulation of dynamic centrifuge tests on piles in sloping ground 119
5.3.1 Numerical modeling and simulation 119
5.3.2 Simulated results and comparisons with centrifuge tests 123
5.3.3 Discussion on tension cutoff of lateral soil–pile interface spring 130
5.3.4 Discussion on large-strain calculation mode 133
5.3.5 Discussion on effect of lateral boundary 135
5.4 Parametric studies on seismic behavior of piles in sloping ground 138
5.4.1 Pile foundation configuration 139
5.4.2 Slope angle 143
5.5 Summary 146
Chapter 6. Slope Effect on Dynamic p–y Backbone Curves for Piles in Cohesionless Soil 149
6.1 Overview 149
6.2 Construction of dynamic p–y backbone curve 150
6.3 Numerical calculation of free-field soil displacement 151
6.3.1 Numerical modeling and simulation 151
6.3.2 Verification of numerical model 153
6.3.3 Free-field soil displacement 156
6.4 Behavior of dynamic p–y loop 158
6.5 Slope effect on dynamic p–y backbone curve 162
6.5.1 Single pile 163
6.5.2 Group pile 167
6.5.3 Verification of suggested dynamic p–y curve 169
6.6 Summary 174
Chapter 7. Conclusions and Recommendations 177
7.1 Conclusions 177
7.2 Recommendations for further researches 181
Bibliography 183
초 록 193
Acknowledgment 195
-
dc.format.extentxix, 217-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectpile-
dc.subjectslope-
dc.subjectseismic behavior-
dc.subjectsoil–pile interface-
dc.subjectdynamic p–y curve-
dc.subjectcentrifuge test-
dc.subjectnumerical simulation-
dc.subjectcohesionless soil-
dc.subject말뚝-
dc.subject지반경사-
dc.subject지진거동-
dc.subject지반-말뚝 인터페이스-
dc.subject동적 p-y곡선-
dc.subject원심모형실험-
dc.subject수치해석-
dc.subject사질토-
dc.subject.ddc624-
dc.titleExperimental and Numerical Study on Seismic Behavior of Piles in Sloping Ground-
dc.title.alternative진동대 실험 및 수치해석을 통한 경사지반 말뚝의 지진거동 분석-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthor전수원엽-
dc.contributor.department공과대학 건설환경공학부-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.contributor.majorGeotechnical Engineering-
dc.identifier.uciI804:11032-000000164793-
dc.identifier.holdings000000000044▲000000000050▲000000164793▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share