Publications

Detailed Information

Numerical Simulation of Wind Flow and Pollutant Transport in Urban Street Canyon : 도시협곡에서의 바람유동과 오염물질 이송에 관한 수치적 연구

DC Field Value Language
dc.contributor.advisorVan Thinh Nguyen-
dc.contributor.authorChuyen Thanh NGUYEN-
dc.date.accessioned2021-11-30T01:55:11Z-
dc.date.available2021-11-30T01:55:11Z-
dc.date.issued2021-02-
dc.identifier.other000000165700-
dc.identifier.urihttps://hdl.handle.net/10371/175092-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000165700ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 건설환경공학부, 2021. 2. Van Thinh Nguyen.-
dc.description.abstractIn this thesis, a numerical model based on an open source CFD package OpenFOAM is developed in order to investigate the flow pattern and pollutant dispersion in urban street canyons with different geometry configurations. In the new model, the pollutant transport driven by airflow is modelled by the scalar transport equation coupling with the momentum equations for airflow, which are deduced from the RANS (Reynolds Averaged Navier-Stokes) equations. The turbulent flow calculation has been calibrated by various two-equation turbulence closure models, such as standard k-ε, RNG k-ε, realizable k-ε, k-ω, k-ω SST, to select a practical and efficient turbulence model to reasonably capture the flow pattern. There are two approaches for the scalar transport equation to calculate the turbulent scalar flux term: Standard Gradient Diffusion Hypothesis (SGDH) approach and Generalized Gradient Diffusion Hypothesis (GGDH) approach. The GGDH approach shows better results than the SGDH approach, and it overcome the limitation of the SGDH approach caused by time consuming calibration of the turbulent Schmidt number.
The numerical model has been validated against different well-known laboratory experiments in regard to various aspect ratios (a relationship between the building height and the width of street canyon), and different building roof shapes (flat, shed, gable, and round). The comparisons between the numerical simulations and experimental measurements show a good agreement on the flow pattern and pollutant distribution. The numerical model has also provided reasonable agreement with experiment data in three-dimensional problem. It shows the ability of the new numerical model, which can be applied to investigate the wind flow and pollutant dispersion in real urban street area.
Eventually, the numerical model has been applied to a real urban street canyon, the Shinjuku special ward of Tokyo; which contains a large number of skyscrapers, and poses several interesting wind engineering problems including how the wind shed will affect pedestrians nearby and the microclimate of the surrounding region. The simulation results show that the new model can capture the wind flow in the Shinjuku urban street canyon.
-
dc.description.abstract본 연구에서는 상이한 지형조건의 도시협곡에서의 공기 흐름과 오염확산 양상을 연구하기 위해, 오픈소스 CFD 프로그램인 OpenFOAM 을 기반으로 하는 수치모델을 개발하였다. 수치모의에서 바람유동에 의해 발생하는 오염물질 이송은 운동량 방정식과 연동되는 스칼라 수송 방정식에 의해 기술되며, 운동량 방정식은 RANS(Reynolds Averaged Navier-Stokes) 방정식을 차용하였다. 난류흐름은 다양한 two-equation 난류모형들을 적용하여 본 연구에 적용할 수 있는 실용적이고 효율적인 최적의 난류모형을 선정하였다. 스칼라 수송 방정식에서는 난류 확산항을 기술하는 다음과 같은 두 가지 방법이 있다: Standard Gradient Diffusion Hypothesis(SGDH)와 Generalized Gradient Diffusion Hypothesis(GGDH). 연구 결과, GGDH 방식이 SGDH 방식보다 더 나은 결과를 도출하였으며 각기 다른 실험조건마다 난류 슈미트 수를 조정해주어야 하는 SGDH 방식의 한계를 극복하였다.
수치모델은 다양한 종횡비(도시협곡 내 빌딩의 높이와 너비의 비율)와 지붕 형상(flat, shed, gable, and round)에 대해 수행된 저명한 실험실 실험결과와 비교 및 검증하였다. 수치모델결과와 실험실 실험결과를 비교한 결과, 흐름과 오염물질 분포 양상이 상당히 일치함을 확인할 수 있었다. 또한 수치모델결과는 3차원 실험조건에서도 실험결과와 합리적인 범위에서 일치하였으며, 이는 본 연구에서 개발된 수치모델이 실제 도시협곡 내 기류와 오염물질 이송을 연구하기 위해 적용될 수 있음을 나타낸다.
마지막으로 본 연구에서 제시되는 수치모델은, 수많은 고층빌딩들을 포함하며 wind shed가 인근 보행자들과 주변지역의 미세기후에 어떻게 영향을 끼치는지 등 몇 가지 흥미로운 공기역학적 문제들이 내포되어 있는 일본 도쿄의 신주쿠 지역을 대상으로 적용되었다. 본 연구의 수치모의결과는 개발된 수치모델이 신주쿠 도시협곡의 실제 공기흐름을 재현할 수 있음을 보여준다.
-
dc.description.tableofcontentsABSTRACT i
TABLE OF CONTENTS iii
NOMENCLATURE vi
1. INTRODUCTION 1
1.1. Motivation of the work 1
1.2. Necessity and Objectives 5
1.3. Structure of thesis 7
2. LITERRATURE REVIEW 9
2.1. Flow characteristics of idealized street canyon 15
2.2. The influence of wind condition 18
2.3. Turbulence transfer between a street canyon and the atmosphere 20
2.4. Characteristics of pollutant dispersion inside street canyon 21
2.5. The influence of geometry of street canyons 23
2.6. Schmidt number 25
2.7. Three-dimensional modelling 26
2.8. CFD modelling of street canyon flow 27
3. METHODOLOGY 31
3.1. Reynolds-Averaged Navier-Stokes Equation (RANS) 31
3.2. Turbulence models and validation 33
3.2.1. The standard k-ε model 34
3.2.2. The RNG k-ε model 36
3.2.3. The realizable k-ε model 37
3.2.4. The k-ω model 38
3.2.5. The SST k-ω model 38
3.2.6. Validation of RANS models 39
3.3. Scalar transport equation and the implementation of code 44
3.3.1. Standard Gradient Diffusion Hypothesis (SGDH) 44
3.3.2. Generalized Gradient Diffusion Hypothesis (GGDH) 46
3.3.3. Implementation of the scalar transport equation in OpenFOAM 47
3.3.4. Validation of the SGDH approach 50
3.3.5. Validation of the GGDH approach 51
3.4. Initial and boundary condition 52
3.4.1. Boundary type 52
3.4.2. Boundary position 53
3.4.3. Inlet boundary profile 54
4. VALIDATION OF CFD MODELS 58
4.1. Studying the flow characteristics in street canyon with different aspect ratios by comparison to Li (2008)s experiment 58
4.1.1. Description of experiment setup 58
4.1.2. Street canyon of AR = 1 60
4.1.3. Street canyon of AR = 2 66
4.1.4. Street canyon of AR = 0.5 71
4.2. Studying the air dispersion in various roof shapes by validating against Kastner-Klein and Plate (1999)s experiment 77
4.2.1. Description of the experiment setup 77
4.2.2. Validation and discussion 80
4.3. Validation of round-shaped roof against the measurement data from Llaguno-Munitxa et al.s experiment (2017) 82
4.4. Validation against CEDVAL data to study the flow characteristics for 3-D isolated building 85
4.4.1. Simulation setup 85
4.4.2. Validation of the isolated rectangular building simulation 88
5. APPLICATION – A CASE STUDY OF AIRFLOW AND POLLUTANT DISPERSION IN SHINJUKU URBAN AREA IN TOKYO 93
6. CONCLUSIONS AND FUTURE WORK 102
6.1. To develop a reliable and economic tool to study flow in urban street canyon 102
6.2. To study the impact of various roof shapes and different aspect ratios on air flow and pollutant dispersion in street canyons. 102
6.2.1. Effect of aspect ratios on flow patterns 102
6.2.2. Effect of roof shapes on the flow patterns and pollutant distribution 104
6.3. To develop a method to adjust accurately Schmidt number 106
6.4. Application to a real urban area 107
6.5. Future work 107
REFERENCE 109
Appendix – Implementation of a solver in OpenFoam 123
초록 138
-
dc.format.extentviii, 139-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectNumerical simulation-
dc.subjectWind flow-
dc.subjectPollutant transport-
dc.subjectUrban street canyon-
dc.subjectOpenFOAM-
dc.subject수치모의-
dc.subject바람유동-
dc.subject오염물질 이송-
dc.subject도시협곡-
dc.subject.ddc624-
dc.titleNumerical Simulation of Wind Flow and Pollutant Transport in Urban Street Canyon-
dc.title.alternative도시협곡에서의 바람유동과 오염물질 이송에 관한 수치적 연구-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthor웬추엔탄-
dc.contributor.department공과대학 건설환경공학부-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.identifier.uciI804:11032-000000165700-
dc.identifier.holdings000000000044▲000000000050▲000000165700▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share