Publications

Detailed Information

Numerical Investigation on Steady/Unsteady Cavitating Flows and Hydrodynamic Forces Around a High-speed Underwater Vehicle With Control Fins : 제어판이 장착된 고속 수중운동체 주변의 정상/비정상 공동유동 및 유체력에 대한 수치해석 연구

DC Field Value Language
dc.contributor.advisor김종암-
dc.contributor.author최요한-
dc.date.accessioned2021-11-30T02:05:45Z-
dc.date.available2021-11-30T02:05:45Z-
dc.date.issued2021-02-
dc.identifier.other000000166128-
dc.identifier.urihttps://hdl.handle.net/10371/175167-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000166128ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 기계항공공학부, 2021. 2. 김종암.-
dc.description.abstractThis work presents extensive numerical investigations on supercavitating flow behaviors around a high-speed underwater vehicle with control fins and the vehicle's hydrodynamic characteristics. Since the supercavitating flows include water, water vapor, and non-condensable air, the homogeneous mixture model is adopted to efficiently describe such multiphase flows.
In order to validate the flow solver used in this work, some experiments of supercaviating flow are simulated in CFD. Firstly, ventilated cavitating flows around a cylinder with disc-shaped cavitator are considered, and then, ventilated cavitation in an unsteady gust flow is computed. The computational results show good agreement with the experiements.
After validations, we conduct computations of supercavitating flows around a high-speed underwater vehicle with control fins, and investigate the surrounding flow physics and hydrodynamic characteristics of the vehicle. The computations are performed under various conditions such as freestream velocity, ventilation rate, and angle of attack. Overall, drag decreases as the cavity encloses a greater part of the control fins and the vehicle body. Even though the angle of attack is zero, the horizontal fins generate lift force aided by buoyancy. The computational results confirm that the cavitating flows lead to nonlinear characteristics of hydrodynamic forces compared with single-phase flows.
-
dc.description.abstract본 논문은 네 개의 제어판이 부착된 고속 수중운동체 주변의 정상/비정상 공동유동을 수치적으로 해석하고, 수중운동체에 작용하는 유체력을 분석하는 연구를 다루고 있다. 본 연구에서 다루고자 하는 초공동 유동은 물과 증기, 그리고 비응축 기체인 공기로 이루어진 다상유동이며, 이를 해석할 수 있도록 균질혼합류 모델(Homogeneous mixture model)을 기반으로 한 URANS(Unsteady Reynolds Averaged Navier-Stokes) 방정식을 지배방정식으로 하여 수치해석을 수행하였다.
본 연구에 사용한 수치해석자의 검증을 위해 우선 충남대학교에서 수행된 분사공동 실험을 수치적으로 해석하여 이를 실험과 비교 및 검증하였다. 다음으로 Minnesota 대학에서 수행된 비정상 돌풍유동에서의 공동현상 실험을 수치적으로 해석하여 이 또한 실험 결과와 비교 및 검증하였다.
다음으로 3차원 수중운동체 주변의 정상/비정상 분사 초공동 유동에 대한 유동해석을 수행하였다. 수중운동체 주변의 공동유동 변화에 따라 동체 및 제어판에 작용하는 양력, 항력 및 피칭 모멘트가 어떠한 영향을 받는지를 분석하기 위해 전방류 유속, 분사유량, 동체 받음각 등을 변화시켜가며 수중운동체 주변의 초공동 유동해석을 수행하였다. 해석 결과 유동조건 변화에 따라 수중운동체 및 제어판에 작용하는 유체력이 복잡한 비선형성을 갖는 것을 확인하였으며, 이로 인해 단상유동을 가정했을 때 예상할 수 있던 유체력 결과와 상이한 결과를 확인할 수 있었다.
-
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Supercavitating flows around high-speed underwater vehicle 1
1.2 Outline of thesis 5
Chapter 2 Computational Modeling 7
2.1 Governing equations 7
2.2 Equation of state (EOS) 10
2.2.1 Ideal gas EOS 12
2.2.2 Stiffened gas EOS 12
2.2.3 IAPWS97 formulation 13
2.3 Cavitation model 19
2.4 Turbulence Model 20
2.4.1 SST two-equation model of Menter 20
2.5 System preconditioning 23
Chapter 3 Computational Methods 28
3.1 Inviscid flux schemes 29
3.1.1 Two-phase AUSMPW+ scheme 29
3.1.2 Two-phase RoeM scheme 32
3.1.3 Shock-discontinuity-sensing term for real fluid flows 34
3.1.4 Scaling of numerical fluxes 37
3.1.5 Scaling of two-phase AUSMPW+ scheme 38
3.1.6 Scaling of two-phase RoeM scheme 40
3.2 Compact scheme for viscous flux 42
3.3 Multi-dimensional limiting process (MLP) 43
3.4 Time integration methods 45
Chapter 4 Validations 47
4.1 Ventilated cavitating flows around a cylidnrical body with cavitator 48
4.1.1 Problem description 48
4.1.2 Numerical results 50
4.2 Ventilated cavitation in unsteady gust flow 58
4.2.1 Problem description 58
4.2.2 Numeriacl results 60
Chapter 5 Supercavitating Flows Around an Underwater Vehicle 64
5.1 Problem description 65
5.2 Effects of freestream velocity 68
5.2.1 Hydrodynamic characteristics: drag 74
5.2.2 Hydrodynamic characteristics: lift 78
5.2.3 Hydrodynamic characteristics: pitching moment 81
5.3 Effects of ventilation rate 83
5.3.1 Hydrodynamic characteristics: drag 85
5.3.2 Hydrodynamic characteristics: lift 88
5.3.3 Hydrodynamic characteristics: pitching moment 90
5.3.4 Unsteady hydrodynamic characteristics 92
5.4 Effects of attack angles 99
5.4.1 Hydrodynamic characteristics: drag 102
5.4.2 Hydrodynamic characteristics: lift 103
5.4.3 Hydrodynamic characteristics: pitching moment 107
Chapter 6 Conclusions 109
6.1 Summary 109
6.2 Future works 111
초록 121
-
dc.format.extentix, 121-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectComputational Fluid Dynamics (CFD)-
dc.subjectMulti-phase flows-
dc.subjectAll-speeds flows-
dc.subjectNatural cavitation-
dc.subjectVentilated cavitation-
dc.subjectHigh-speed underwater vehicle-
dc.subjectHydrodynamic force-
dc.subject.ddc621-
dc.titleNumerical Investigation on Steady/Unsteady Cavitating Flows and Hydrodynamic Forces Around a High-speed Underwater Vehicle With Control Fins-
dc.title.alternative제어판이 장착된 고속 수중운동체 주변의 정상/비정상 공동유동 및 유체력에 대한 수치해석 연구-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorChoe, Yohan-
dc.contributor.department공과대학 기계항공공학부-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.contributor.major항공우주공학-
dc.identifier.uciI804:11032-000000166128-
dc.identifier.holdings000000000044▲000000000050▲000000166128▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share