Publications

Detailed Information

Deep speaker embedding for robust speaker recognition : 비화자 요소에 강인한 화자 인식을 위한 딥러닝 기반 성문 추출

DC Field Value Language
dc.contributor.advisor김남수-
dc.contributor.author강우현-
dc.date.accessioned2021-11-30T02:19:45Z-
dc.date.available2021-11-30T02:19:45Z-
dc.date.issued2021-02-
dc.identifier.other000000164203-
dc.identifier.urihttps://hdl.handle.net/10371/175270-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000164203ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2021. 2. 김남수.-
dc.description.abstractOver the recent years, various deep learning-based embedding methods have been proposed and have shown impressive performance in speaker verification. However, as in most of the classical embedding techniques, the deep learning-based methods are known to suffer from severe performance degradation when dealing with speech samples with different conditions (e.g., recording devices, emotional states). Also, unlike the classical Gaussian mixture model (GMM)-based techniques (e.g., GMM supervector or i-vector), since the deep learning-based embedding systems are trained in a fully supervised manner, it is impossible for them to utilize unlabeled dataset when training.
In this thesis, we propose a variational autoencoder (VAE)-based embedding framework, which extracts the total variability embedding and a representation for the uncertainty within the input speech distribution. Unlike the conventional deep learning-based embedding techniques (e.g., d-vector or x-vector), the proposed VAE-based embedding system is trained in an unsupervised manner, which enables the utilization of unlabeled datasets. Furthermore, in order to prevent the potential loss of information caused by the Kullback-Leibler divergence regularization term in the VAE-based embedding framework, we propose an adversarially learned inference (ALI)-based embedding technique. Both VAE- and ALI-based embedding techniques have shown great performance in terms of short duration speaker verification, outperforming the conventional i-vector framework.
Additionally, we present a fully supervised training method for disentangling the non-speaker nuisance information from the speaker embedding. The proposed training scheme jointly extracts the speaker and nuisance attribute (e.g., recording channel, emotion) embeddings, and train them to have maximum information on their main-task while ensuring maximum uncertainty on their sub-task. Since the proposed method does not require any heuristic training strategy as in the conventional disentanglement techniques (e.g., adversarial learning, gradient reversal), optimizing the embedding network is relatively more stable. The proposed scheme have shown state-of-the-art performance in RSR2015 Part 3 dataset, and demonstrated its capability in efficiently disentangling the recording device and emotional information from the speaker embedding.
-
dc.description.abstract최근 몇년간 다양한 딥러닝 기반 성문 추출 기법들이 제안되어 왔으며, 화자 인식에서 높은 성능을 보였다. 하지만 고전적인 성문 추출 기법에서와 마찬가지로, 딥러닝 기반 성문 추출 기법들은 서로 다른 환경 (e.g., 녹음 기기, 감정)에서 녹음된 음성들을 분석하는 과정에서 성능 저하를 겪는다. 또한 기존의 가우시안 혼합 모델 (Gaussian mixture model, GMM) 기반의 기법들 (e.g., GMM 슈퍼벡터, i-벡터)와 달리 딥러닝 기반 성문 추출 기법들은 교사 학습을 통하여 최적화되기에 라벨이 없는 데이터를 활용할 수 없다는 한계가 있다.
본 논문에서는 variational autoencoder (VAE) 기반의 성문 추출 기법을 제안하며, 해당 기법에서는 음성 분포 패턴을 요약하는 벡터와 음성 내의 불확실성을 표현하는 벡터를 추출한다. 기존의 딥러닝 기반 성문 추출 기법 (e.g., d-벡터, x-벡터)와는 달리, 제안하는 기법은 비교사 학습을 통하여 최적화 되기에 라벨이 없는 데이터를 활용할 수 있다. 더 나아가 VAE의 KL-divergence 제약 함수로 인한 정보 손실을 방지하기 위하여 adversarially learned inference (ALI) 기반의 성문 추출 기법을 추가적으로 제안한다. 제안한 VAE 및 ALI 기반의 성문 추출 기법은 짧은 음성에서의 화자 인증 실험에서 높은 성능을 보였으며, 기존의 i-벡터 기반의 기법보다 좋은 결과를 보였다.
또한 본 논문에서는 성문 벡터로부터 비 화자 요소 (e.g., 녹음 기기, 감정)에 대한 정보를 제거하는 학습법을 제안한다. 제안하는 기법은 화자 벡터와 비화자 벡터를 동시에 추출하며, 각 벡터는 자신의 주 목적에 대한 정보를 최대한 많이 유지하되, 부 목적에 대한 정보를 최소화하도록 학습된다. 기존의 비 화자 요소 정보 제거 기법들 (e.g., adversarial learning, gradient reversal)에 비하여 제안하는 기법은 휴리스틱한 학습 전략을 요하지 않기에, 보다 안정적인 학습이 가능하다. 제안하는 기법은 RSR2015 Part3 데이터셋에서 기존 기법들에 비하여 높은 성능을 보였으며, 성문 벡터 내의 녹음 기기 및 감정 정보를 억제하는데 효과적이었다.
-
dc.description.tableofcontents1. Introduction 1
2. Conventional embedding techniques for speaker recognition 7
2.1. i-vector framework 7
2.2. Deep learning-based speaker embedding 10
2.2.1. Deep embedding network 10
2.2.2. Conventional disentanglement methods 13
3. Unsupervised learning of total variability embedding for speaker verification with random digit strings 17
3.1. Introduction 17
3.2. Variational autoencoder 20
3.3. Variational inference model for non-linear total variability embedding 22
3.3.1. Maximum likelihood training 23
3.3.2. Non-linear feature extraction and speaker verification 25
3.4. Experiments 26
3.4.1. Databases 26
3.4.2. Experimental setup 27
3.4.3. Effect of the duration on the latent variable 28
3.4.4. Experiments with VAEs 30
3.4.5. Feature-level fusion of i-vector and latent variable 33
3.4.6. Score-level fusion of i-vector and latent variable 36
3.5. Summary 39
4. Adversarially learned total variability embedding for speaker recognition with random digit strings 41
4.1. Introduction 41
4.2. Adversarially learned inference 43
4.3. Adversarially learned feature extraction 45
4.3.1. Maximum likelihood criterion 47
4.3.2. Adversarially learned inference for non-linear i-vector extraction 49
4.3.3. Relationship to the VAE-based feature extractor 50
4.4. Experiments 51
4.4.1. Databases 51
4.4.2. Experimental setup 53
4.4.3. Effect of the duration on the latent variable 54
4.4.4. Speaker verification and identification with different utterance-level features 56
4.5. Summary 62
5. Disentangled speaker and nuisance attribute embedding for robust speaker verification 63
5.1. Introduction 63
5.2. Joint factor embedding 67
5.2.1. Joint factor embedding network architecture 67
5.2.2. Training for joint factor embedding 69
5.3. Experiments 71
5.3.1. Channel disentanglement experiments 71
5.3.2. Emotion disentanglement 82
5.3.3. Noise disentanglement 86
5.4. Summary 87
6. Conclusion 93
Bibliography 95
Abstract (Korean) 105
-
dc.format.extentxii, 106-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectrobust speaker recognition-
dc.subjectspeech embedding-
dc.subjectspeaker verification-
dc.subjectunsupervised representation learning-
dc.subjectsupervised disentanglement-
dc.subject화자 인식-
dc.subject성문 추출-
dc.subject화자 인증-
dc.subject비교사 표현 학습-
dc.subject.ddc621.3-
dc.titleDeep speaker embedding for robust speaker recognition-
dc.title.alternative비화자 요소에 강인한 화자 인식을 위한 딥러닝 기반 성문 추출-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorKangwuhyun-
dc.contributor.department공과대학 전기·정보공학부-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.identifier.uciI804:11032-000000164203-
dc.identifier.holdings000000000044▲000000000050▲000000164203▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share