Publications

Detailed Information

Ru-Catalyzed Transfer Hydrogenation for Imine Synthesis and Pd-Catalyzed Direct C–H Functionalization of Unactivated Arene : 루테늄 촉매의 이동 수소화를 통한 이민 합성 및 팔라듐 촉매를 이용한 비활성 방향족 화합물의 C-H 결합 기능화

DC Field Value Language
dc.contributor.advisor최태림-
dc.contributor.author김다은-
dc.date.accessioned2021-11-30T05:00:36Z-
dc.date.available2021-11-30T05:00:36Z-
dc.date.issued2021-02-
dc.identifier.other000000163773-
dc.identifier.urihttps://hdl.handle.net/10371/176160-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000163773ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 자연과학대학 화학부, 2021. 2. 최태림.-
dc.description.abstractTransition-metal-catalyzed C–N and C–C bond formation reactions were developed. Part I introduces catalytic imine synthesis utilizing the dehydrogenative alcohol activation strategy. Due to versatile synthetic utilities of imines, many synthetic methods have been developed. The basic strategies and representative examples are discussed in chapter 1. A chemoselective imine synthesis from nitriles and secondary alcohols was achieved with a ruthenium dihydride catalyst (Chapter 2). This reaction offers a simple, convenient, and environmentally benign synthetic method to synthesize versatile imines by applying the hydrogen-transfer strategy.
Part II describes C(sp2)–H functionalization of arenes mediated by transition-metal catalysis. Direct C–H functionalization of arenes is a central topic in organic synthesis. Recent advances in the transition-metal catalysis enabled the selective and efficient transformation of unactivated C(sp2)–H bonds. The C–H functionalization strategies and representative examples in C–C bond-forming reaction through direct C–H arylation and alkylation are introduced in chapter 3. The progress in the photoinduced palladium catalysis and its mechanistic aspects are summarized in chapter 4. The unique properties of photoexcited Pd(0) catalysis have led to the development of novel C–C bond forming reactions. Chapter 5 describes the site-selectivity and mechanism of the Pd-catalyzed C–H arylation of simple arenes. Comprehensive mechanistic investigations including kinetic measurements and stoichiometric experiments provided concrete evidence of a cooperative bimetallic mechanism. The transmetalation step, not the C‒H activation step, was identified as the selectivity-determining step in the Pd-catalyzed C‒H arylation of simple arenes. Lastly, chapter 6 described the development of catalytic C–H alkylation of simple arenes with alkyl bromides by photoinduced Pd catalysis. Mechanistic investigations clarified that the catalytic turnover process involves a Pd(0)/Pd(I) redox cycle through a Br atom transfer. The distinctive reactivity among alkyl halides originated from the unexpected role of the formate base which reduces the off-cycle Pd(PPh3)2Br2 to an active Pd(0) species.
-
dc.description.abstract본 연구는 전이금속 촉매를 이용한 탄소-질소 및 탄소-탄소 결합 형성반응 개발에 대한 것이다. 진행된 연구는 결합 형성 반응에 따라 크게 두 부분으로 나누어진다.
첫 부분에서는 알코올 탈수소화 기반 촉매적 이민 합성법에 관한 연구를 소개한다. 이민의 합성적으로 유용하여, 많은 이민 합성법이 개발되었다. 1장에서는 이민 합성 전략과 대표적인 예들을 소개한다. 루테늄-이중하이드라이드 촉매를 이용한 나이트릴과 알코올로부터의 화학선택적 이민 합성법을 개발하였다 (2장). 개발된 반응은 수소-이동화 전략을 적용하여 간단하고, 편리하며, 친환경적인 이민 합성법을 제공한다.
두번째 부분에서는 전이금속 촉매반응을 이용한 탄소-수소 결합 기능화에 관한 연구를 소개한다. 방향족 화합물의 직접적인 탄소-수소 결합 기능화 반응은 유기화학 분야에서 가장 큰 화두이다. 최근 전이금속 촉매반응을 이용한 연구에서는 선택적이고 효율적으로 비활성화된 탄소-수소 결합을 변환할 수 있다. 3장에서는 탄소-수소 결합 기능화 전략과 탄소-수소 결합 아릴화 및 알킬화 반응을 이용한 탄소-탄소 결합 형성 반응의 대표적인 예들을 소개한다. 4장에서는 빛에 의한 팔라듐 촉매반응 연구와 이의 메커니즘 관점이 논의되었다. 광활성화된 Pd(0)의 독특한 촉매적 특성을 통하여 새로운 탄소-탄소 결합 형성 반응이 개발되었다. 5장에서는 팔라듐 촉매를 이용한 간단한 방향족 화합물의 탄소-수소 결합 아릴화 반응에서 선택성과 메커니즘 연구에 대해 다룬다. 반응속도 측정과 당량 실험을 포함한 종합적인 메커니즘 연구 수행을 기반으로 협동적 이금속 메커니즘을 구체적으로 제안하였다. 개발된 반응에서는 탄소-수소 결합 활성화 단계가 아닌 금속교환 단계가 선택성-결정 단계로 규명되었다. 마지막으로, 6장에서는 빛에 의한 팔라듐 촉매 반응을 이용한 간단한 방향족 화합물과 알킬브롬으로부터 촉매적 탄소-수소 결합 알킬화 반응 개발에 대해 소개한다. 메커니즘 연구를 통하여 브롬 원자 이동을 매개로한 Pd(0)/Pd(I) 산화환원 촉매 반응 과정을 규명하였다. 알킬 할라이드 간의 다른 반응성은 포메이트 염기 의한 영향성으로 나타난다. 이는 비활성화된 Pd(PPh3)2Br2 촉매를 활성화된 Pd(0) 촉매종으로 환원하는 역할을 수행한다.
-
dc.description.tableofcontentsTable of Contents

Abstract 1
Table of Contents 3
List of Tables 9
List of Schemes 11
Appendix 250
Abstract in Koreans 369

Part I. Imine Synthesis Using Catalytic Alcohol Activation Strategy
1.1 Introduction 15
1.2 Conventional imine bond synthesis 16
1.3 Dehydrogenative alcohol activation 17
1.4 Imine synthesis with catalytic dehydrogenative alcohol activation strategy 20
1.4.1 Imine synthesis with catalytic dehydrogenative alcohol activation: Aerobic oxidative coupling strategy 21
1.4.2 Imine synthesis with catalytic dehydrogenative alcohol activation: Acceptorless dehydrogenative strategy 24
1.5 Conclusion 27
1.6 References 28

2.1 Introduction 31
2.2 Results and discussion 33
2.2.1 Optimization for imine synthesis from nitrile and alcohol 33
2.2.2 Substrate scope of alcohol and nitrile 35
2.2.3 Mechanistic studies 39
2.3. Conclusion 41
2.4. Experimental section 41
2.4.1 General information 41
2.4.2 General procedure for imine synthesis from nitrile and alcohol 42
2.4.3 General procedure for imine reduction 42
2.4.4 Optimization of reaction conditions 43
2.4.5 GC analysis for reaction intermediate detection 44
2.4.6 Characterization of newly reported compounds 45
2.5. References 48

Part II. Pd-Catalyzed C–C Bond Formation via C(sp2)–H Funtionalization of Simple Arenes

3.1 Introduction 52
3.2 Types of C(sp2)–H functionalization strategy 53
3.3 Substrate-controlled site-selective C(sp2)–H functionalization 55
3.4 Transition metal-catalyzed direct C–H arylation of simple arenes 58
3.4.1 C–H arylation of simple arenes by CMD process 59
3.4.2 Cooperative bimetallic mechanism in Pd catalytic systems 61
3.5 Transition metal-catalyzed C–H alkylation of simple arenes 64
3.5.1 Introduction of C–H alkylation for the synthesis of alkylarenes 64
3.5.2 Recent progress in the transition metal-catalyzed C–H alkylation of arenes 65
3.5.3 Homolytic aromatic substitution of benzene 67
3.6 Conclusion 71
3.7 References 72

4.1 Introduction 75
4.2 General concept of photoexcited palladium catalysis 76
4.3 Visible-light induced Pd-catalyzed cross-coupling reactions 77
4.3.1 Coupling with C(sp2)–X electrophiles 77
4.3.2 Cross-coupling with alkyl electrophiles 80
4.4 Visible-light induced Pd-catalyzed C–H alkylation 83
4.5 Visible-light induced Pd-catalyzed three-component cascade reaction 86
4.6 Conclusion 88
4.7 References 89

5.1 Introduction 91
5.2 Results and discussion 95
5.2.1 Optimization for C(sp2)–H arylation 95
5.2.2 Substrate scope of arenes and aryl bromides 98
5.2.3 Mechanistic studies 103
5.3 Conclusion 118
5.4 Experimental section 119
5.4.1 General information 119
5.4.2 General procedure for the C(sp2)–H arylation reaction 120
5.4.3 Optimization of reaction conditions 121
5.4.4 Comparison of the reaction rates 125
5.4.5 Kinetic isotope effect (KIE) measurements 126
5.4.6 Kinetic data 127
5.4.6.1 Order in [Pd] 127
5.4.6.2 Order in [ArBr] 129
5.4.6.3 Dependence on KOPiv 130
5.4.6.4 Dependence on K2CO3 131
5.4.7 Kinetic data in [Pd] at low concentrations in C6D6 133
5.4.8 Competition experiments 134
5.4.8.1 Competition between two different aryl bromides 134
5.4.8.2 H/D scrambling experiment with D2O 135
5.4.8.3 H/D scrambling experiment between ethoxybenzene and benzene-d6 136
5.4.9 Synthesis of Pd complex 4a and 4b 138
5.4.9.1 Synthesis of intermediate Pd complex 4b 138
5.4.9.2 Synthesis of Pd complex 4b 139
5.4.10 Stoichiometric reaction of Pd complex 139
5.4.11 Effect of crown ethers 140
5.4.12 Characterization of newly reported compounds 141
5.5 DFT computations 162
5.5.1 Calculation of proton affinities of arenes 162
5.5.1.1 General methods 162
5.5.1.2 Calculational results of proton affinities 163
5.5.2 Calculation of reductive elimination process 164
5.5.2.1 General methods 167
5.5.2.2 Comparison of the reductive elimination processes 168
5.5.2.3 DFT-optimized structures energy components 169
5.6 References 170

6.1 Introduction 176
6.2 Results and discussion 180
6.2.1 Optimization for C(sp2)–H alkylation 180
6.2.2 Substrate scope of alkyl bromides and arenes 183
6.2.3 Mechanistic studies 191
6.3 Conclusion 202
6.4 Experimental section 203
6.4.1 General information 203
6.4.2 General procedure for the C(sp2)–H alkylation reaction 204
6.4.3 Optimization of reaction conditions 205
6.4.4 Synthetic applications 208
6.4.5 Kinetic isotope effect (KIE) measurements 209
6.4.5.1 KIE determined from rate comparision of two parallel reactions 209
6.4.5.2 KIE determined from an intramolecular competition with benzene-1,3,5-d3 210
6.4.6 Stern-Volmer quenching experiments 211
6.4.7 In-situ 31P NMR experiments 212
6.4.8 Reactions with stoichiometric amount of Pd(PPh3)4 213
6.4.9 Additive-based robustness screen 214
6.4.10 Characterization of newly reported compounds 215
6.5 DFT computations 231
6.5.1 General methods 231
6.5.2 Computational studies of alkyl–Pd(II) 232
6.5.3 Computations involving polyfluoroarenes 236
6.5.4 Computation of the hydrogen atom transfer barrier for pentafluorobenzene 237
6.5.5 Direct single-electron transfer 238
6.5.6 Deprotonation of the radical σ-complexes 239
6.5.7 Kinetic isotope effect computations 240
6.5.8 Single-electron reduction of alkyl halides by photoexcited Pd(0) 240
6.5.9 Second single-electron reduction of alkyl halides by Pd(I) complexes 241
6.5.10 DFT-optimized structures energy components 242
6.6 References 245

Appendix
Chapter 2 250
Chapter 5 256
Chapter 6 331
-
dc.format.extent370-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectimine formation-
dc.subjectalcohol activation-
dc.subjecttransfer hydrogenation-
dc.subjectC–H arylation-
dc.subjectconcerted metalation-deprotonation-
dc.subjectC–H alkylation-
dc.subjectpalladium photocatalysis.-
dc.subject이민 합성-
dc.subject알코올 활성화-
dc.subject이동 수소화-
dc.subjectC-H 아릴화-
dc.subject메탈화탈양성자화-
dc.subjectC-H 알킬화-
dc.subject팔라듐 광화학-
dc.subject.ddc540-
dc.titleRu-Catalyzed Transfer Hydrogenation for Imine Synthesis and Pd-Catalyzed Direct C–H Functionalization of Unactivated Arene-
dc.title.alternative루테늄 촉매의 이동 수소화를 통한 이민 합성 및 팔라듐 촉매를 이용한 비활성 방향족 화합물의 C-H 결합 기능화-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorDaeun Kim-
dc.contributor.department자연과학대학 화학부-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.contributor.major유기화학-
dc.identifier.uciI804:11032-000000163773-
dc.identifier.holdings000000000044▲000000000050▲000000163773▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share