Publications

Detailed Information

Study on the Physicochemical Properties of Clean-label Starch Produced using Blending, Ultrasound and Enzymatic Treatments : 블렌딩, 초음파, 효소처리를 이용하여 제조한 클린라벨 전분의 물리화학적 특성에 관한 연구

DC Field Value Language
dc.contributor.advisor김용노-
dc.contributor.author박신제-
dc.date.accessioned2021-11-30T06:19:12Z-
dc.date.available2022-03-28T21:00:42Z-
dc.date.issued2021-02-
dc.identifier.other000000165382-
dc.identifier.urihttps://hdl.handle.net/10371/176485-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000165382ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 농업생명과학대학 바이오시스템·소재학부(바이오시스템공학), 2021. 2. 김용노.-
dc.description.abstractThe food and beverage companies are focusing on Clean-label food recently. Clean-label means a product made from raw materials with minimal processing without artificial coloring or other food additives. In this regard, starch prepared by physical (blends, heat-moisture treatment, ultrasound treatment etc.) and enzymatic treatments are classified as clean label starch, and these treatments can produce special starch that are consistent with consumer trends while giving native starch a variety of properties to have the effect of chemically modified starch. Commonly, physical and enzymatic treatment of various starch have been studied well, but research on the manufacture of clean-label starch combined with physical and enzyme treatment, and systematic study on characteristics of clean label starch-based paste and hydrogel for using in food industry are very insufficient.
Therefore, in this research, clean-label starch with enhanced physicochemical properties was produced and encapsulation system using clean-label starch was developed. To manufacture the physically modified clean-label starch, the ultrasound treated rice and potato starch were gelatinized by mixing them in a ratio of 1:3, and it was completed by freeze-drying them. This manufactured clean-label starch showed similar viscosity (about 30 Pa·s at 50 s-1) when compared to xanthan gum. Therefore, clean-label starch was applied to Toromi and ketchup to replace xanthan gum, and it was thought that xanthan gum could be replaced sufficiently.
Cyclic glucans, which is made from enzymatic treatment, were also examined as one kind of clean-label starch. It was possible to overcome the shortcomings of natural plant extracts with antibacterial and antioxidant activity by using cyclic glucans as hosts. As for the types of cyclic glucan, β-cyclodextrin, cycloamylose, hydroxypropyl-β-cyclodextrin, maltodextrin and clustered dextrin were used. Forming nano-complexations and multi-nanomaterials using cyclic glucans with natural plant extracts (licorice and rosemary) improved stability (increased about 4.73 times) and solubility (increased 3.0~13.4 times).
In conclusion, this research has provided an overview of the currently available clean-label starch. Clean label starch, made without the use of chemicals, is not expected to completely replace conventional modified starch at the present time, due to various limitations. However, there remain many opportunities for use of clean label starch. Clean label starch currently constitutes only 5% of the global modified starch market, it will increasingly replace hydrocolloids and modified starch.
-
dc.description.abstract생활 습관의 변화와 더불어 식음료 업체들은 최근 클린라벨 식품에 주력하고 있다. 클린라벨 이란 인공 착색제 또는 다른 식품 첨가물 없이 최소한의 처리 및 원료로 만든 제품을 말한다. 이와 관련하여 물리적 처리방법(블렌딩, 열수처리, 초음파처리 등)과 효소처리로 제조된 전분은 클린라벨 전분으로 분류되며, 이러한 처리법은 일반 전분에 다양한 화학적 성질을 부여하면서 소비자 트렌드에 부합하는 특별한 전분을 생산할 수 있다. 일반적으로 다양한 전분의 물리적, 효소적 처리방법은 잘 연구되어 왔으나, 물리적-효소적 처리를 결합하여 클린라벨 전분을 제조하는 것에 관한 연구와 클린라벨 전분 기반 페이스트 및 하이드로겔의 특성에 대한 체계적인 연구는 매우 미흡한 실정이다. 따라서 이번 연구에서는 물리화학적 특성이 강화된 클린라벨 전분을 생산하고 클린라벨 전분을 이용한 캡슐화 시스템을 개발하였다.
먼저 물리적으로 변형된 클린라벨 전분을 제조하기 위하여 초음파 처리된 쌀과 감자 전분을 1:3의 비율로 혼합하여 호화시켰고, 페이스트를 동결 건조하여 완성하였다. 이렇게 제조된 클린라벨 전분은 잔탄검에 비해서 점성이 뛰어났으며, 실제로 토로미와 케첩 등 잔탄검이 이용되는 식품에 적용하였다. 결과적으로 클린라벨 전분은 잔탄검을 충분히 대체할 수 있을 것으로 생각되었다.
또 다른 클린라벨 전분의 종류로 효소 처리를 통해 제조된 환형글루칸에 관해 실험하였다. 환형글루칸의 종류로는 β-사이클로덱스트린, 사이클로아밀로스, 히드록시프로필-β-사이클로 덱스트린, 말토 덱스트린, 분지 덱스트린이 사용되었다. 천연 식물 추출물(감초, 로즈마리)은 항균 및 항산화 활성을 가지고 있지만 소수성을 가지므로 물에 잘 용해가 되지 않는 등의 단점을 가지고 있다. 따라서 환형글루칸을 호스트로 사용하고 천연 식물 추출물을 게스트물질로 사용함으로써 캡슐화를 통해 추출물의 단점을 극복할 수 있었다. 그 결과 환형글루칸-추출물의 나노복합체 및 O/W에멀젼을 첨가한 멀티나노물질을 형성해 안정성과 용해도를 높일 수 있었다.
화학물질을 사용하지 않고 만든 클린라벨 전분은 여러 가지 한계로 인해 현재 기존의 변성전분을 완전히 대체하지는 못할 것으로 생각된다. 그러나 클린라벨 전분은 현재 전 세계 변성전분 시장의 5%에 불과하므로 좀 더 연구하고 발전시킬 수 있는 기회가 많이 남아있다. 이를 통해 앞으로는 클린라벨 전분이 더욱 더 하이드로 콜로이드와 변성전분을 대체해 나갈 것으로 생각된다.
-
dc.description.tableofcontentsAbstract i
Table of Contents iii
List of Tables x
List of Figures xi
Abbreviations xvii

1. Overall Introduction 1
2. Background and Literature Review 5
2.1. Clean-label 5
2.2. Emulsion 7
2.2.1. Surfactant 7
2.2.2. O/W nano-emulsion 8
2.2.3. Filled hydrogel 10
2.3. Cyclic glucan 12


3. Production and characterization of clean-label starch: Establishment of blending strategy 15
3.1. Introduction 15
3.2. Objectives of research 21
3.3. Materials and Methods 22
3.3.1. Materials 22
3.3.2. Methods 22
3.3.2.1. Physical modification methods 22
3.3.2.1.1. Starch blending method 22
3.3.2.1.2. Ultrasound treatment 23
3.3.2.1.3. Pre-gelatinization 23
3.3.2.2. Physicochemical properties 24
3.3.2.2.1. Starch granular size 24
3.3.2.2.2. Amylose content 24
3.3.2.2.3. Crystallinity 25
3.3.2.2.4. Amylopectin chain length 25
3.3.2.2.5. Fourier-transform infrared spectroscopy (FT-IR) 26
3.3.2.2.6. Rheological properties 26
3.3.2.2.7. Pasting properties (RVA) 26
3.3.2.2.8. Texture profiles (TPA) 27
3.3.2.2.9. Swelling power & solubility 27
3.3.2.2.10. Regression analysis 28
3.3.2.2.11. Statistical analysis 28
3.4. Results and Discussion 29
3.4.1. Granular size 29
3.4.2. Amylose content 32
3.4.3. Amylopectin chain length and crystallinity 34
3.4.4. FT-IR 38
3.4.5. Rheological properties 41
3.4.6. Pasting properties (RVA) 45
3.4.7. Texture profile 51
3.4.8. Swelling power and solubility 54
3.4.9. Ultrasound treatment 56
3.4.10. Regression analysis 63
3.4.10.1. Correlation coefficient 63
3.4.10.2. Prediction of properties 68
3.5. Conclusions 73
4. Clean-label starch for xanthan substitute: rheological and digest characteristics 75
4.1. Introduction 75
4.2. Objectives of research 78
4.3. Materials and Methods 79
4.3.1. Materials 79
4.3.2. Methods 79
4.3.2.1. Rheological measurement 79
4.3.2.1.1. Oscillatory test 79
4.3.2.1.2. Steady-state flow test 80
4.3.2.2. Preparation of β-carotene encapsulated in oil-in-water (O/W) emulsion 81
4.3.2.3. Preparation of filled starch hydrogels containing xanthan gum 82
4.3.2.4. In vitro digestibility test 82
4.3.2.5. Determination of β-carotene retention rate 84
4.3.2.6. Confocal laser scanning microscopy 84
4.3.2.7. Production of clean-label starch for xanthan substitute 85
4.3.2.8. Regression analysis 85
4.3.2.9. Statistical analysis 85
4.4. Results and Discussion 86
4.4.1. Influence of xanthan gum on rheological properties of filled starch hydrogels 86
4.4.2. Influence of xanthan gum on lipid digestibility 90
4.4.3. Influence of xanthan gum on β-carotene retention rate 97
4.4.4. Clean-label starch for xanthan substitute 101
4.4.4.1. Starch determination 101
4.4.4.2. Ultrasound treatment and concentration determination 103
4.4.4.3. Ratio determination 105
4.4.5. Regression analysis 112
4.4.6. Applications 116
4.5. Conclusions 122
5. Characteristics of clean-label starch in encapsulation systems: Enzymatic modification 124
5.1. Introduction 124
5.2. Objectives of research 127
5.3. Materials and Methods 128
5.3.1. Materials 128
5.3.2. Methods 128
5.3.2.1. Cyclic glucan complexations with licorice extract 128
5.3.2.2. Powderization of licorice-cyclic glucan complexation 129
5.3.2.3. Production of O/W nano-emulsion containing rosemary extract 131
5.3.2.4. FE-SEM (Field emission-scanning electron microscope) measurement 131
5.3.2.5. FT-IR (Fourier transform infrared) measurement 132
5.3.2.6. Determination of antioxidant activity 132
5.3.2.7. Determination of antibacterial activity 133
5.4. Results and Discussion 135
5.4.1. Water solubility of licorice in cyclic glucan complexations 135
5.4.2. Antioxidant activity of licorice in cyclic glucan complexation 139
5.4.3. Storage stability licorice-cyclic glucan complexation 139
5.4.4. Determination of the formation of licorice-cyclic glucan complexation 144
5.4.5. Manufacturing and stability evaluation of multi-nanomaterials 148
5.4.6. Characteristics of multi-nanomaterials 152
5.4.6.1. Evaluation of antioxidant activity for multi-nanomaterials 154
5.4.6.2. Evaluation of antibacterial activity for multi-nanomaterials 158
5.5. Conclusions 166
6. References 168
7. Abstract in Korean 185
-
dc.format.extentxviii, 207-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectClean-label starch-
dc.subjectStarch blending-
dc.subjectUltrasound treatment-
dc.subjectCyclic glucan-
dc.subjectEncapsulation-
dc.subject클린라벨 전분-
dc.subject전분 블렌딩-
dc.subject초음파 처리-
dc.subject환형 글루칸-
dc.subject캡슐화 반응-
dc.subject.ddc660.6-
dc.titleStudy on the Physicochemical Properties of Clean-label Starch Produced using Blending, Ultrasound and Enzymatic Treatments-
dc.title.alternative블렌딩, 초음파, 효소처리를 이용하여 제조한 클린라벨 전분의 물리화학적 특성에 관한 연구-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorPark, Shinjae-
dc.contributor.department농업생명과학대학 바이오시스템·소재학부(바이오시스템공학)-
dc.description.degreeDoctor-
dc.date.awarded2021-02-
dc.identifier.uciI804:11032-000000165382-
dc.identifier.holdings000000000044▲000000000050▲000000165382▲-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share