Publications

Detailed Information

Engineered Nanoparticles for Improving Cancer Immunotherapy : 암 면역요법 개선을 위한 나노입자 개발

DC Field Value Language
dc.contributor.advisor김병수-
dc.contributor.author강미경-
dc.date.accessioned2022-04-05T05:52:01Z-
dc.date.available2022-04-05T05:52:01Z-
dc.date.issued2021-
dc.identifier.other000000166392-
dc.identifier.urihttps://hdl.handle.net/10371/177697-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000166392ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 협동과정 바이오엔지니어링전공, 2021.8. 강미경.-
dc.description.abstractCancer immunotherapies, including adoptive T cell transfer [e.g., chimeric antigen receptor (CAR)-T cell immunotherapy)] and immune checkpoint blockades, have shown impressive success in cancer treatment. Successful cancer immunotherapies can provide an enhanced anti-tumor response that is tumor-specific and long-lasting. Nevertheless, only a minority of patients respond to immunotherapies. The limited therapeutic effects are partially due to (1) the inefficient drug delivery to tumor sites and (2) the diverse immunosuppressive factors in the tumor microenvironment that hinder the anti-tumor responses of cancer immunotherapy. Moreover, (3) complex ex vivo cell-manufacturing procedures and a low therapeutic efficacy against solid tumors pose a major challenge to the broad application of CAR-T cell therapy. Nanoparticle-based cancer immunotherapy has been suggested to be a promising attempt to overcome these drawbacks. The main goal of this thesis is to develop nanoparticles for improving current cancer immunotherapy. Specifically, this thesis describes two nanoparticles that can (1) efficiently target tumors, (2) enhance anti-tumor immune responses in multiple ways, and (3) be easily manufactured. Firstly, we developed T cell membrane-coated nanoparticles (TCMNPs). Over immune checkpoint inhibitor therapy, TCMNPs have higher therapeutic efficacy due to the additional TCMNPs ability, other than immune checkpoint blockade effects, of (1-1) tumor-targeting via T cell membrane-originated proteins and (2-1) killing cancer cells by releasing anti-tumor drugs or inducing Fas ligand-mediated apoptosis. Unlike adoptive T cell transfer therapy, TCMNPs can scavenge immunosuppressive factors in solid tumors, thereby helping cytotoxic T cells kill cancer cells. Moreover, TCMNPs can be (3-1) easily prepared from T cell lines and synthetic polymers within 2 days at a lower cost. Secondly, we developed a nanocomplex of macrophage-targeting nanocarrier and DNA that can program macrophages to have cancer-killing (CAR) proinflammatory phenotype (M1). Over CAR-T cell therapy, in vivo injection of the nanocomplex has superior therapeutic efficacy against solid tumors by successfully (1-2) targeting macrophages in the tumor and (2-2) reprogramming to CAR-M1 macrophages that are capable of CAR-mediated cancer phagocytosis and anti-tumor immune-modulation. This approach (3-2) avoids the laborious and costly process of ex vivo CAR-expressing cell production. Altogether, these results suggest a facile approach to engineering nanoparticles that can be efficiently delivered to target sites, modulate the immune system against cancer in a multiple-way. Overall, these nanoparticles demonstrate substantial value for therapeutic applications to improve current cancer immunotherapy.-
dc.description.abstract입양 T 세포 전달 치료법 [예 : 키메라 항원 수용체 (CAR)-T 세포 면역 요법] 및 면역관문억제제를 포함한 암 면역 치료제는 암 치료에서 괄목할만한 치료효과를 보여주고 있다. 성공적인 암 면역 요법은 항암 반응이 암 특이적이면서 치료 효과가 오래 지속된다는 장점이 있다. 그럼에도 불구하고, 현재 암 면역 치료제는 일부의 환자에게만 효과가 있다. 제한된 치료 효과는 부분적으로 (1) 암 면역 치료제의 낮은 암 전달 효율 및 (2) 암 면역 치료제의 항암 반응을 방해하는 종양 미세 환경의 다양한 면역 억제 인자 때문이다. 더욱이, (3) 복잡한 생체 외 세포 제조 절차와 CAR-T 세포 면역 요법의 고형암에 대한 낮은 치료 효능은 현재의 암 면역 치료제의 광범위한 적용에 방해요소가 되고 있다. 나노 입자 기반 암 면역 치료법은 이러한 단점을 극복하기위한 유망한 치료 전략으로 주목받고 있다. 본 논문의 주요 목표는 현재의 암 면역 치료제의 한계점을 개선하기 위한 나노 입자를 개발하는 것이다. 이 논문은 (1) 효율적으로 암에 전달되고, (2) 여러가지 기전으로 항암 면역 반응을 향상시키면서, (3) 쉽게 제조 할 수 있는 두 가지 나노 입자를 제시한다. 한 가지는 T 세포막을 나노 입자에 코팅(TCMNP)하여 개발하였다. TCMNP는 면역관문억제제 기능 외에 (1-1) T 세포막에서 유래한 단백질을 통해 암을 표적할 수 있으며, (2-1) 항암 약물을 방출하거나 Fas 리간드 매개를 통해 암세포 사멸을 유도할 수 있기에 면역관문억제제와 비교하였을 때 더 높은 암치료 효과를 가진다. TCMNP는 입양 T 세포 전달 치료법과 다르게 면역 억제 인자를 제거하여 항암면역세포을 돕는 작용으로 암세포를 제거할 수도 있다. 또한, (3-1) TCMNP는 저렴한 비용으로 2 일 이내에 T 세포주 및 합성 고분자로부터 용이하게 제조 할 수 있다. 본 논문에서 개발된 또 다른 한 가지 나노입자는 항암성(CAR)과 친염증 표현형(M1)을 갖도록 대식세포를 프로그래밍 할 수 있는 대식세포-표적 캐리어와 DNA의 나노 복합체이다. 나노 복합체를 생체 내 주입하는 것은 (1-2) 성공적으로 암 내 대식세포를 표적하고, (2-2) CAR매개 암 포식 작용 및 항암 면역 조절이 가능한 CAR-M1 대식세포를 유도하여 CAR-T 세포 면역 요법과 비교하였을 때 고형암에서 더 높은 치료효과를 가진다. 또한, 이 접근법을 통해 (3-2) 생체 외 CAR-발현 세포 생산의 힘들고 비용이 많이 드는 과정을 피할 수 있다. 결론적으로, 본 논문은 목표 부위에 효율적으로 전달되고, 다방면으로 항암 면역반응을 유도하는 나노 입자를 제작하는 손쉬운 접근 방식을 제시한다. 개발된 나노 입자들을 현재 암 면역 치료제의 한계점을 개선할 수 있다는 점에서 상당한 가치를 가진다.-
dc.description.tableofcontentsCHAPTER 1: INTRODUCTION 1
1.1 Motivation for Research 3
1.2 Research Objectives 5
1.3 Specific Aims 6
1.4 Thesis Outline 7
CHAPTER 2: RESEARCH BACKGROUNDS 8
2.1 A Renaissance of Cancer Immunotherapy 10
2.1.1 Tumor Microenvironment 10
2.1.2 Cancer-Immunity Cycle 12
2.1.2.1 Initiating Anti-tumor Immunity: Tumor Antigen Release and Presentation 12
2.1.2.2 Elimination of Cancer 13
2.1.3 Immune-suppression in the Tumor Microenvironment 15
2.1.3.1 Immunosuppressive cells 15
2.1.3.2 Immunosuppressive cytokines 16
2.1.3.3 Immune checkpoint molecules 18
2.1.4 Current Cancer Immunotherapy and Limitation 20
2.1.4.1 Adoptive T Cell Transfer 20
2.1.4.2 Immune Checkpoint Inhibitors 23
2.1.4.3 Cancer vaccine 23
2.1.4.4 Cytokine therapies 23
2.2 Nanoparticles for Cancer Immunotherapy 24
2.2.1 Nanoparticles as a gene delivery carrier 26
2.2.2 Nanoparticles as an immune-modulator 28
2.2.3 Nanoparticles as a tumor-targeted delivery carrier 29
CHAPTER 3: EXPERIMENTAL PROCEDURES 31
3.1 Cell Culture 33
3.2 Preparation of Nanoparticles 34
3.2.1 T cell membrane-coated nanoparticles; TCMNPs 34
3.2.1.1 T cell membrane isolation 34
3.2.1.2 Preparation of T cell membrane-coated nanoparticles 34
3.2.2 MPEI/pCAR-IFN-γ nanocomplexes 36
3.2.2.1 Preparation of CAR-M1 pDNA 36
3.2.2.2 Preparation of nanocomplexes of MPEI and CAR-IFN-γ pDNA 36
3.3 Characterization of Nanoparticles 37
3.3.1 T cell membrane-coated nanoparticles; TCMNPs 37
3.3.1.1 Physical characterization of TCMNPs 37
3.3.1.2 Characterization of membrane proteins on TCMNPs 37
3.3.2 MPEI/pCAR-IFN-γ nanocomplexes 39
3.4 In Vitro Assay 40
3.4.1 T cell membrane-coated nanoparticles; TCMNPs 40
3.4.1.1 Viability and apoptosis of cancer cells after treatment with TCMNPs 40
3.4.1.2 PD-1-mediated TCMNPs adhesion to B16F10 41
3.4.1.3 Cytokine scavenging effects 42
3.4.1.4 Functional analysis of CD8+ T cells with TGF-β1 blockade by TCMNPs 42
3.4.1.5 In vitro CTL functional analysis 44
3.4.2 MPEI/pCAR-IFN-γ nanocomplexes 45
3.4.2.1 Assessment of M2 macrophage viability post MPEI/pCAR-IFN-γ transfection 45
3.4.2.2 In vitro transfection using the MPEI/pCAR-IFN-γ nanocomplex 45
3.4.2.3 Lentiviral transduction 46
3.4.2.4 Macrophage phagocytosis analysis 46
3.4.2.5 Macrophage polarization analysis 47
3.5 In vivo Assay 49
3.5.1 Mice 49
3.5.2 Biodistribution 49
3.5.2.1 Tumor targeting efficiency of TCMNPs 49
3.5.2.2 Evaluation of the proportion of CAR expression at the organ and cellular levels after MPEI/pCAR-IFN-γ treatments 50
3.5.3 Tumor growth measurement 51
3.5.4 Therapeutic mechanism analysis 52
3.5.4.1 Flow cytometric analysis of immune cells in the tumor 52
3.5.4.2 Enzyme-linked immunosorbent assay (ELISA) 53
3.5.4.3 qRT-PCR 53
3.5.4.4 Hematoxylin and eosin (H&E) and terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining 53
3.5.4.5 Immmunohistochemistry 54
3.5.5 In vivo toxicity assessments 55
3.5.6 In vivo depletion of CD8+ immune cells 56
3.5.7 Anti-tumor activity in B16F10 melanoma metastasis model 56
3.5.8 Dacarbazine (DTIC)-loaded TCMNPs 57
3.5.8.1 DTIC encapsulation and loading efficiency of TCMNPs 57
3.5.8.2 Drug release test 58
3.5.8.3 In vivo anti-tumor efficacy of TCMNP/DTICs 58
3.5.9 Therapeutic efficacy of TCMNPs in LLC tumor model 59
3.6 Statistical Analysis 59
3.7 Primer sequences for qRT-PCR used in this thesis 60
CHAPTER 4: T CELL-MIMICKING NANOPARTICLES FOR CANCER IMMUNOTHERAPY 61
4.1 Introduction 63
4.2 Results and Discussion 68
4.2.1 Preparation and characterization of TCMNPs 68
4.2.1.1 TCMNPs directly kill cancer cells and inhibit PD-L1 binding to CTLs in vitro 77
4.2.1.2 TGF-β scavenging effects of TCMNPs in vitro 82
4.2.1.3 TCMNPs reinvigorate exhausted CTLs 86
4.2.2 Biodistribution and tumor targeting of TCMNPs in B16F 10 tumor-bearing mice 89
4.2.3 In vivo toxicity and melanoma growth inhibitory effects of TCMNPs 92
4.2.4 Therapeutic mechanisms of TCMNPs' anti-tumor activities 97
4.2.5 Lung metastasis inhibition by TCMNPs 101
4.2.6 Enhanced efficacy of anti-tumor drug-loaded TCMNPs 104
4.2.7 Anti-tumor efficacy of TCMNPs on multiple types of tumors 107
4.3 Conclusions 110
4.4 Acknowledgements 110
CHAPTER 5: NANOCOMPLEX-MEDIATED IN VIVO PROGRAMMING TO CHIMERIC ANTIGEN RECEPTOR-M1 MACROPHAGES FOR CANCER THERAPY 111
5.1 Introduction . 113
5.2 Results and Discussion 117
5.2.1 Preparation of MPEI/pCAR-IFN-γ nanocomplexes 117
5.2.2 CAR-mediated antigen-specific phagocytosis in vitro 124
5.2.3 IFN-γ-mediated M2-to-M1 phenotypic shift in vitro 127
5.2.4 Macrophage targeting and programming in vivo 131
5.2.5 Tumor-suppressive effects of intratumorally injected MPEI/pCAR-IFN-γ in syngeneic umor-bearing mice 134
5.2.6 MPEI/pCAR-IFN-γ enhances CD8+ T cell response in vivo 139
5.2.7 Anti-tumor efficacy of systemically administered MPEI/pCAR-IFN-γ 148
5.3 Conclusions 155
5.4 Acknowledgements 155
CHAPTER 6: CONCLUSIONS, IMPLICATIONS, AND FUTURE DIRECTIONS . 156
REFERENCES . 163
요약 (국문초록) 175
-
dc.format.extent191-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectnanoparticle-
dc.subjectcancer immunotherapy-
dc.subjectadoptive T cell transfer-
dc.subjectimmune checkpoint inhibitor-
dc.subjectcell membrane coating-
dc.subjectCAR-macrophage-
dc.subjectDNA/polymer nanocomplex-
dc.subjectin vivo transfection-
dc.subject나노입자-
dc.subject암 면역 치료제-
dc.subject입양 T 세포 전달-
dc.subject면역 관문 억제제-
dc.subject세포막 코팅-
dc.subjectCAR 대식세포-
dc.subjectDNA/폴리머 나노복합체-
dc.subject생체 내 형질주입-
dc.subject.ddc660.6-
dc.titleEngineered Nanoparticles for Improving Cancer Immunotherapy-
dc.title.alternative암 면역요법 개선을 위한 나노입자 개발-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorMikyung Kang-
dc.contributor.department공과대학 협동과정 바이오엔지니어링전공-
dc.description.degree박사-
dc.date.awarded2021-08-
dc.identifier.uciI804:11032-000000166392-
dc.identifier.holdings000000000046▲000000000053▲000000166392▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share