Publications

Detailed Information

Evolution of deformation microstructures of mantle xenolith and epidote blueschist : Implications for seismic properties in the lithosphere and subduction zones : 맨틀 포획암과 녹렴석 청색편암의 변형미구조 진화: 암석권 및 섭입대에서의 지진파 특성에 대한 의의

DC Field Value Language
dc.contributor.advisor정해명-
dc.contributor.author박용-
dc.date.accessioned2022-04-05T05:54:14Z-
dc.date.available2022-04-05T05:54:14Z-
dc.date.issued2021-
dc.identifier.other000000166524-
dc.identifier.urihttps://hdl.handle.net/10371/177728-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000166524ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 자연과학대학 지구환경과학부, 2021.8. 박용.-
dc.description.abstract본 학위논문에서는 암석권 맨틀과 수렴판 경계에서의 암석의 변형 환경 및 메커니즘, 그리고 지진파 특성을 이해하기 위하여, 맨틀 감람암 포획암과 녹렴석 청색편암의 변형미구조를 연구하였다. 첫번째로는 중국 동부 샨왕(Shanwang)지역의 암석권 맨틀에서 산출된 맨틀 감람암 포획암 내의 감람석의 변형 환경과 격자선호방향(LPO)을 연구하였다. 연구 결과, 첨정석 레졸라이트(spinel lherzolite)에서는 감람석의 B타입 격자선호방향이, 첨정석 웰라이트(spinel wehrlite)에서는 감람석의 E타입 격자선호방향이 각각 측정되었다. 시료들이 받은 응력(stress)은 자유 전위 밀도와 감람석의 재결정 입자 크기 응력계를 사용하여 약 18–74 MPa로 추정되었다. 광물들이 포함한 물의 함량은 푸리에 변환 적외선 분광법을 사용하여 감람석에서 50–200 ppm H/Si, 사방휘석에서 120–760 ppm H/Si, 단사휘석에서 1060–7690 ppm H/Si로 각각 측정되었다. 이러한 데이터들은 감람석의 B타입 격자선호방향이 높은 응력과 물의 존재 하에 형성되었고, 감람석의 E타입 격자선호방향이 상대적으로 낮은 응력과 물이 존재하는 경우에 형성되었을 것임을 시사하였다. 이러한 두 가지 유형의 감람석 격자선호방향을 사용하여, 본 연구에서는 중국 동부 샨왕지역에서 관측되는 지진파 이방성이 서로 다른 시기의 두 가지 변형 양식으로 설명될 수 있음을 제안하였다. 두번째로는 따뜻한 섭입대에서 섭입하는 판의 상부에 존재하는 남섬석과 녹렴석의 변형미구조와 격자선호방향의 형성을 이해하기 위하여, 0.9–1.5 GPa의 압력과 400–500 ℃의 온도에서 녹렴석 청색편암의 단순전단 변형실험을 최초로 수행하였다. 실험 결과, 전단 변형 정도가 증가함에 따라 남섬석과 녹렴석의 1형 및 2형 격자선호방향이 각각 형성되었다. 이들의 변형미구조 및 결정 내 미세구조 관찰을 통하여, 본 연구에서는 따뜻한 섭입대의 섭입하는 판 상부에서 남섬석과 녹렴석의 격자선호방향 형성에 영향을 미치는 중요한 요인들로써 암석의 전단 변형 정도와 광물들의 입자 크기, 그리고 구성 광물들 사이의 유변학적 대비를 제안하였다. 이렇게 실험적으로 변형된 녹렴석 청색편암에서 계산한 지진파 속도를 섭입하는 판을 둘러싼 암석권 맨틀의 지진파 속도와 비교하였을 때, P파 속도는 약 8–9 %가 감소하였고, S파 속도는 약 6–7 %가 감소하였다. 이러한 결과는 변형된 녹렴석 청색편암이 섭입하는 판 상부에서 관측되는 지진파 저속도층에 기여할 수 있음을 시사하였다. 또한 녹렴석 청색편암으로 구성된 해양 지각에 대한 지진파 이방성의 계산 결과는 남섬석과 녹렴석의 부피 비율과 격자선호방향의 유형, 그리고 섭입하는 판의 섭입각이 섭입대에서 관측되는 지진파 속도와 이방성을 결정하는 중요한 요소들이 될 수 있음을 시사하였다. 마지막으로, 자연상에서 변형된 암석 상에서의 광물들의 변형 메커니즘과 격자선호방향 형성을 이해하기 위하여, 도미니카 공화국 리오 산 후안(Río San Juan) 변성 복합체의 사문암 멜란지에서 섭입된 해양지각으로부터 산출된 청색 편암의 변형미구조를 연구하였다. 연구결과, 대부분의 시료에서 측정된 각섬석의 격자선호방향은 변형실험에서 형성된 각섬석의 2형 격자선호방향에 해당하였고, 유렴석과 녹렴석의 격자선호방향은 변형실험에서 형성된 녹렴석의 1형 격자선호방향에 해당하였다. 각섬석과 유렴석 반상쇄정에서 관찰된 높은 밀도의 아결정경계들과 강한 격자 세기는 이들의 격자선호방향이 전위크리프에 의해 형성되었음을 시사하였다. 그리고 연구지역에서의 S파 지연 시간과 이방성층의 두께를 계산한 결과들은 청색편암상 변성작용을 겪은 섭입된 해양지각이 구성 광물의 격자선호방향과 이들이 지구조운동에 의해 배열된 방향에 따라 카리브판 북동경계부에서의 지진파 이방성에 크게 기여할 수 있음을 시사하였다.-
dc.description.abstractTo understand the deformation environments and mechanisms of rocks and seismic properties in the lithospheric mantle and convergent plate margins, the deformation microstructures of mantle peridotite xenoliths and epidote blueschists were studied. First, the deformation environments and lattice preferred orientations (LPOs) of olivine in mantle peridotite xenoliths from lithospheric mantle in Shanwang, eastern China were investigated. Two types of LPOs of olivine were found: type-B LPO in spinel lherzolites and type-E LPO in spinel wehrlites. Paleostress of sample was estimated to be 18–74 MPa using a free dislocation density and recrystallized grain-size piezometer of olivine. Water content was measured using FTIR: 50–200 ppm H/Si for olivine, 120–760 ppm H/Si for enstatite, and 1060–7690 ppm H/Si for diopside. These data suggest that the type-B LPO of olivine was developed in the presence of water at high stress, and type-E LPO of olivine was most likely developed in the presence of water at relatively low stress. Using the two different types of olivine LPOs, our data suggest that seismic anisotropy under the study area can be explained by two deformation modes in different times. Second, to understand the deformation microstructures and LPO development of glaucophane and epidote at the top of a subducting slab in a warm subduction zone, deformation experiments of epidote blueschist were conducted for the first time in simple shear under the pressures of P = 0.9–1.5 GPa and temperatures of T = 400–500 °C. Experimental results showed that type-1 and -2 LPOs of glaucophane and epidote were developed with increasing shear strain. These experimental results suggest that the magnitude of shear strain, grain size, and rheological contrast between constituent minerals are important factors affecting the development of LPO of glaucophane and epidote at the top of a subducting slab in a warm subduction zone. The 8–9 % reduction of Vp and 6–7 % reduction of Vs of experimentally deformed epidote blueschist, compared to the seismic velocity of the lithospheric mantle surrounding the subducting slab, indicate that deformed epidote blueschist can contribute to the seismic low velocity layer observed on the top of the subducting slab. The calculation of seismic anisotropy for the oceanic crust composed of epidote blueschist suggests that the volume proportion and LPO types of glaucophane and epidote, and the subducting angle of the slab can be important factors to control seismic velocity and anisotropy observed in subduction zones. Third, to understand deformation mechanisms and LPO developments of minerals in naturally deformed rocks, epidote blueschists from a subducted oceanic crust in serpentinite mélange of Río San Juan metamorphic complex, Dominican Republic were studied. Most LPOs of amphiboles corresponded to the type-2 LPO of glaucophane, and some LPOs of zoisites and epidotes corresponded to the type-1 LPO of epidote. Observations of the high density of subgrain boundaries and strong fabric strength of amphibole and zoisite porphyroclast suggest that their LPOs were developed by dislocation creep. The calculations of delay time of S-wave and anisotropic layer thickness in the study area suggest that the subducted oceanic crust metamorphosed in blueschist-facies condition can highly contribute to the seismic anisotropy depending on the LPO of the constituent minerals.-
dc.description.tableofcontentsCHAPTER 1. Introduction 1
CHAPTER 2. Deformation microstructures of olivine and pyroxene in mantle xenoliths in Shanwang, eastern China, near the convergent plate margin, and implictions for seismic anisotropy 7
Abstract 8
2.1. Introduction 10
2.2. Geological background 14
2.3. Methods 18
2.3.1. Sample description 18
2.3.2. Determination of lattice preferred orientation (LPO) 22
2.3.3. Calculation of the seismic velocity and anisotropy 25
2.3.4. Estimation of paleostress 26
2.3.5. Measurement of water content 28
2.4. Results 29
2.4.1. LPOs of olivine, enstatite, and diopside 29
2.4.2. Seismic anisotropy of minerals and whole rocks 35
2.4.3. Paleostress estimation of sample 42
2.4.4. Water content of minerals in the sample 45
2.5. Discussions and implications 47
2.5.1. LPOs of olivine 47
2.5.1.1. Type-B LPO of olivine 47
2.5.1.2. Type-E LPO of olivine 48
2.5.2. LPOs of pyroxene 50
2.5.3. Relationship between fabric strength of minerals and seismic anisotropy 52
2.5.4. Thickness of anisotropic layer under the study area 55
2.5.5. Implications for seismic anisotropy in eastern China 61
2.6. Conclusion 65
CHAPTER 3. Lattice preferred orientation and deformation microstructures of glaucophane and epidote in experimentally deformed epidote blueschist at high pressure 66
Abstract 67
3.1. Introduction 69
3.2. Methods 72
3.2.1. Starting material 72
3.2.2. Deformation experiment in simple shear 76
3.2.3. Determination of LPOs of minerals 80
3.2.4. Observation of the deformation microstructures in minerals 81
3.3. Results 82
3.3.1. Deformation microstructures after experiments 82
3.3.2. LPOs of glaucophane and epidote 87
3.3.3. Observations of intracrystalline deformation microstructures in deformed glaucophane 90
3.3.4. Observations of dislocation microstructures in deformed glaucophane and epidote using TEM 92
3.4. Discussions 96
3.4.1. LPO formation and deformation mechanisms of glaucophane 96
3.4.2. LPO formation and deformation mechanisms of epidote 101
3.4.3. Implications for deformation mechanisms of epidote blueschist in a warm subduction zone 105
3.4.4. Implications for seismic anisotropy of subducting slab in a subduction zone 108
3.5. Conclusion 110
CHAPTER 4. Seismic velocity and anisotropy of glaucophane and epidote in epidote blueschists and implications for seismic properties in a warm subduction zone 112
Abstract 113
4.1. Introduction 115
4.2. Methods 119
4.2.1. Sample description 119
4.2.2. Measurement of LPOs 120
4.2.3. Calculation of the seismic velocity and anisotropy 123
4.3. Results 125
4.3.1. Seismic velocity and anisotropy for deformed glaucophanes 125
4.3.2. Seismic velocity and anisotropy for deformed epidotes 131
4.3.3. Seismic velocity and anisotropy for deformed epidote blueschist (whole rock) 133
4.4. Discussions and implications 136
4.4.1. Seismic velocity of epidote blueschist induced by LPO of minerals 136
4.4.2. Relationship between seismic properties of epidote blueschist and deformation of minerals 141
4.4.2.1. Seismic velocity of epidote blueschist versus shear strain 141
4.4.2.2. Seismic velocity of epidote blueschist versus fabric strength 146
4.4.2.3. Seismic anisotropy of epidote blueschist versus shear strain 154
4.4.2.4. Seismic anisotropy of epidote blueschist versus fabric strength 157
4.4.3. Relationship between LPOs of minerals in epidote blueschist and seismic properties of subducting slab 161
4.4.4. Implications for seismic properties in subduction zone 168
4.4.4.1. Low velocity layer (LVL) on top of the subducting slab 168
4.4.4.2. Seismic anisotropy of fast shear wave in the forearc region 173
4.5. Conclusion 188

CHAPTER 5. Deformation microstructures of epidote blueschist from Ro San Juan metamorphic complex, Dominican Republic, and implications for seismic anisotropy in the northeastern margin of the Caribbean plate 190
Abstract 191
5.1. Introduction 193
5.2. Geological background 196
5.3. Methods 200
5.3.1. Sample description 200
5.3.1.1. Zoisite eclogiteepidote blueschist facies metamorphic rock 202
5.3.1.2. Epidote eclogiteepidote blueschist facies metamorphic rock 203
5.3.1.3. Lawsoniteepidote blueschist facies metamorphic rock 208
5.3.1.4. Felsic blueschist facies metamorphic rock 208
5.3.1.5. Epidote blueschistupper greenschist facies metamorphic rock 209
5.3.2. Determination of LPOs of minerals 214
5.3.3. Calculation of seismic velocity and anisotropy 216
5.4. Results 218
5.4.1. LPOs of minerals 218
5.4.1.1. LPOs of amphibole group minerals 218
5.4.1.2. LPOs of epidote group minerals 224
5.4.1.3. LPOs of omphacite 230
5.4.1.4. LPOs of phengite 232
5.4.1.5. LPOs of garnet 236
5.4.1.6. LPOs of quartz, chlorite, titanite, and albite 238
5.4.2. Seismic velocity and anisotropy of minerals 246
5.4.2.1. Polycrystalline amphibole group minerals 246
5.4.2.2. Polycrystalline epidote group minerals 252
5.4.2.3. Polycrystalline omphacites 255
5.4.2.4. Polycrystalline phengites 257
5.4.2.5. Polycrystalline garnets 259
5.4.2.6. Polycrystalline quartzs, chlorites, titanites, and albites 261
5.4.3. Seismic velocity and anisotropy of whole rocks 269
5.5. Discussions 272
5.5.1. The development of LPOs of minerals in high pressure metabasites 272
5.5.1.1. LPO development of amphiboles 272
5.5.1.2. LPO development of epidote group minerals 277
5.5.1.3. LPO development of omphacites 286
5.5.2. Estimation of metamorphic pressure (P) and temperature (T) of epidote blueschist facies rocks 289
5.5.3. Implications for seismic anisotropy in the northeastern margin of the Caribbean plate 291
5.6. Conclusion 295
CHAPTER 6. Summary & Conclusion 297
REFERENCES 303
ABSTRACT (in Korean) 326
-
dc.format.extentxix, 327-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectDeformation microstructures-
dc.subjectlattice preferred orientation-
dc.subjectepidote blueschist-
dc.subjectmantle xenolith-
dc.subjectdeformation experiment-
dc.subjectseismic anisotropy-
dc.subject변형미구조-
dc.subject격자선호방향-
dc.subject녹렴석 청색편암-
dc.subject맨틀 포획암-
dc.subject암석변형실험-
dc.subject지진파 이방성-
dc.subject.ddc550-
dc.titleEvolution of deformation microstructures of mantle xenolith and epidote blueschist : Implications for seismic properties in the lithosphere and subduction zones-
dc.title.alternative맨틀 포획암과 녹렴석 청색편암의 변형미구조 진화: 암석권 및 섭입대에서의 지진파 특성에 대한 의의-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorYong Park-
dc.contributor.department자연과학대학 지구환경과학부-
dc.description.degree박사-
dc.date.awarded2021-08-
dc.identifier.uciI804:11032-000000166524-
dc.identifier.holdings000000000046▲000000000053▲000000166524▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share