Publications

Detailed Information

Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor-Induced Electron Doping of Single-Layer Graphene Electrode

DC Field Value Language
dc.contributor.authorPark, Sohyun-
dc.contributor.authorKim, Hwa Rang-
dc.contributor.authorKim, Juhee-
dc.contributor.authorHong, Byung-Hee-
dc.contributor.authorYoon, Hyo Jae-
dc.date.accessioned2022-04-18T04:11:34Z-
dc.date.available2022-04-18T04:11:34Z-
dc.date.created2021-11-05-
dc.date.issued2021-10-
dc.identifier.citationAdvanced Materials, Vol.33 No.41, p. 2103177-
dc.identifier.issn0935-9648-
dc.identifier.other147007-
dc.identifier.urihttps://hdl.handle.net/10371/178063-
dc.description.abstractEnhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single-layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold-thiolate covalent contact. Thermoelectric junction measurements with a liquid-metal technique reveal that the value of Seebeck coefficient in large-area junctions based on n-alkylamine self-assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n-alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field-effect transistor analysis indicate that such enhancements benefit from the creation of new in-gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules.-
dc.language영어-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleEnhanced Thermopower of Saturated Molecules by Noncovalent Anchor-Induced Electron Doping of Single-Layer Graphene Electrode-
dc.typeArticle-
dc.contributor.AlternativeAuthor홍병희-
dc.identifier.doi10.1002/adma.202103177-
dc.citation.journaltitleAdvanced Materials-
dc.identifier.wosid000690686100001-
dc.identifier.scopusid2-s2.0-85113680900-
dc.citation.number41-
dc.citation.startpage2103177-
dc.citation.volume33-
dc.identifier.sci000690686100001-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorHong, Byung-Hee-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusSELF-ASSEMBLED MONOLAYERS-
dc.subject.keywordPlusTHERMOELECTRIC PROPERTIES-
dc.subject.keywordPlusTHERMAL CONDUCTANCE-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusLENGTH DEPENDENCE-
dc.subject.keywordPlusLARGE-AREA-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorEGaIn-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthormolecular thermoelectrics-
dc.subject.keywordAuthorSeebeck effect-
dc.subject.keywordAuthorself-assembled monolayers-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Physics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share