Publications

Detailed Information

Performance Evaluation of a Moisture Diffusion Energy Harvester Fabricated with Activated Carbon Derived from Biomass Resources : 바이오매스 유래 활성탄으로 제조된 수분 확산 에너지 하베스팅 장치의 성능 평가

DC Field Value Language
dc.contributor.advisorJoon Weon Choi-
dc.contributor.authorSa-myeong GIM-
dc.date.accessioned2022-04-20T02:48:44Z-
dc.date.available2022-04-20T02:48:44Z-
dc.date.issued2021-
dc.identifier.other000000166544-
dc.identifier.urihttps://hdl.handle.net/10371/178208-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000166544ko_KR
dc.description학위논문(석사) -- 서울대학교대학원 : 국제농업기술대학원 국제농업기술학과, 2021.8. Joon Weon Choi.-
dc.description.abstractCorn stover carbonized with various catalysts (KOH, ZnCl2, and H3PO4) was milled and acid treated to prepare biomass derived activated carbon (Bio-AC). After preparing bio-ink from them, these Bio-ACs were then coated onto a fibrous material to finally fabricate a moisture diffusion energy harvester (Bio-MDEH).
The performance of this Bio-MDEH was then evaluated by measuring open-circuit voltage (Voc) and short-circuit current (Isc). The maximum performance was measured as 926.2 mV and 37.75 µA, respectively. Carbonization temperature, milling time, and surface modification all have significant effects on the performance of Bio-MDEH, which has been demonstrated through t-test and ANOVA statistical evaluations. The fabrication variables were screened to a carbonization temperature of 800 ℃, milling up to 1 hour, and acid treatment. The acid treatment showed remarkable enhancement in Voc, and KOH catalyst proved to be the best option to improve the Isc of Bio-MDEH.
Additionally, Bio-MDEH successfully powered light and touch sensors with signal changes of 1.6 V, 0.85 mV and 50 mV for the touch sensor, soil moisture sensor, and light sensor, respectively. The series/parallel connection Bio-MDEH reliably generated voltage and current for over 11 hours. Moreover, the results showed that the energy harvesting period was longer for higher amounts of water.
Finally, we identified the parameters correlated with device performance to be conductivity, mesopore volume (in a moderate correlation), and meso+macro surface area (a strong correlation). More importantly, these results revealed that the mesoporous structure of Bio-AC plays a key role in the formation of the electric double layer (EDL), which induced a pseudo-streaming current on the surface of Bio-MDEH.
These results suggest that the mesoporous structure of activated carbon allows a more efficient pathway for ions to form EDL, so that the interaction between carbon and the ions can be enhanced, resulting in high streaming currents and potentials.
This adapted approach could be a suitable option for more environmentally friendly and efficient development of practical applications using water diffusion energy harvesting technology.
-
dc.description.abstract기건 상태의 옥수수대 분말(Corn Stover; 5mm 이하)을 분쇄한 후 다양한 촉매 (KOH, ZnCl2, and H3PO4)와 온도 (600, 700, 800°C) 조건에서 탄화시켰다. 이후 표면개질을 위한 산 처리 과정을 거쳐 바이오매스 유래 활성탄(Biomass-derived activated carbon: Bio-AC)을 제조하였다. 준비된 Bio-AC를 탈 이온수, 계면활성제와 혼합하여 Bio-AC 잉크로 만든 후, 모세관현상을 일으키는 소재(Food Wiper)를 Bio-AC 잉크에 침지 및 건조하여 수분 확산 에너지 하베스팅 장치 (Moisture diffusion energy harvester: MDEH)를 제조하였다.
완성된 Bio-MDEH의 성능 평가를 위해, 비대칭적 수분공급 상태에서 양 끝에 발생하는 개방회로 전압 (Voc) 및 단락회로 전류 (Isc)를 측정하였다. 그 결과, Voc와 Isc의 최대값은 각각 926.2 mV와 37.75 μA로 측정되었다. 이후 진행된 t-test와 ANOVA 결과에서 탄화온도, 분쇄시간, 산 처리 모두 Bio-MDEH의 성능에 유의미한 영향을 주는 것으로 확인되었으며 그 결과, 탄화온도 800℃, 분쇄 1시간, 산 처리 시행이 최적의 제작조건인 것으로 확인되었다. 특히 산 처리 과정에서 Bio-MDEH의 Voc가 현저하게 증가하였고, KOH 촉매를 사용해 제조한 Bio-MDEH에서는 12배 이상 증가한 Isc가 측정되었다. 뿐만 아니라, Bio-MDEH를 통해 조도센서, 터치센서를 성공적으로 구동하였으며 직렬과 병렬로 연결된 Bio-MDEH는 연속적인 수분 공급 조건에서 11시간 이상 안정적으로 전압과 전류를 생성하였다. 또한 주입되는 물의 양이 많아질수록 전력 생성 시간이 한번에 3.58 시간까지 늘어나는 것으로 나타났다.
마지막으로, 상관관계 분석 결과 메조+매크로 기공 표면적 (Smeso+macro)이 Bio-MDEH의 성능과 강한 상관관계를 갖는 것으로, 전도도 (Cond) 및 메조기공 부피 (Vmeso)가 중간 정도의 상관관계를 갖는 것으로 나타났다. 이러한 결과는 Bio-AC의 메조다공성 (mesoporous) 구조가 Bio-MDEH의 표면에 유사흐름전류 (pseudo- streaming current)를 유도하는 전기이중층(EDL)의 형성에 중요한 역할을 한다는 것을 보여준다. 이온이 활성탄의 메조다공성 구조를 통해 더 넓은 면적에서 효율적으로 전기이중층을 형성하게 되면 이온 간의 상호 작용이 늘어나 더 큰 스트리밍 전류 및 전위를 유도할 수 있다.
결론적으로, 본 연구에서 제안한 수분 확산 에너지 하베스팅 기술을 활용하면 더욱 효율적이며 친환경적으로 에너지 하베스팅 장치를 구현할 수 있을 것이라 기대된다.
-
dc.description.tableofcontents1. Introduction 1
1.1. Climate change and renewable energy 1
1.2. Moisture diffusion energy harvesting technology 2
1.3. Biomass resources as promising carbon neutral material 6
1.4. Biomass-derived activated carbon 8
1.5. Objectives 10
2. Literature review 11
2.1. Various carbon materials for fabrication of moisture diffusion energy harvester 11
2.1.1. Petroleum-based carbon materials 11
2.1.2. Attempts to use materials derived from natural resources in the manufacture of moisture diffusion energy harvester 13
2.2. Setting of fabrication variables 14
3. Materials and methods 18
3.1. Fabrication variable screening of moisture diffusion energy harvesters and statistical analysis of governing factors affecting its performance 18
3.1.1. Feedstock preparation and carbonization 18
3.1.2. Preparation of Bio-AC 20
3.1.3. Characteristic analyses of biomass derived activated carbon 22
3.1.4. Fabrication of biomass derived moisture diffusion energy harvester and its performance evaluation 24
3.1.5. Powering test for analog sensors using biomass derived moisture diffusion energy harvester 27
3.1.6. Statistical analysis: t-test for paired two sample, correlation analysis 29
3.2. Study on the performance of moisture diffusion energy harvester using catalytic activated carbon 31
3.2.1. Preparation and catalytic carbonization of feedstock 31
3.2.2. Fabrication of biomass derived moisture diffusion energy harvester 33
3.2.3. Characteristic analyses of prepared biomass derived activated carbon 37
3.2.4. Biomass derived moisture diffusion energy harvester performance evaluation 40
4. Results and discussion 44
4.1. Fabrication variable screening of moisture diffusion energy harvesters and statistical analysis of governing factors affecting its performance 44
4.1.1. Characterization of biomass derived activated carbon 44
4.1.2. Evaluation of biomass derived moisture diffusion energy harvester performance 51
4.1.3. Powering test for analog sensors using biomass derived moisture diffusion energy harvester 53
4.1.4. Statistical analysis 56
4.2. Study on the performance of moisture diffusion energy harvester using catalytic activated carbon 62
4.2.1. Catalytic carbonization of biomass 62
4.2.2. Characterization of biomass derived activated carbon 64
4.2.3. Evaluation of biomass derived moisture diffusion energy harvester performance 69
5. Conclusion 77
References 78
-
dc.format.extentX, 86-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectBiomass-
dc.subjectActivated carbon-
dc.subjectCarbon neutral-
dc.subjectMoisture diffusion-
dc.subjectEnergy harvesting-
dc.subjectElectric double layer-
dc.subject바이오매스-
dc.subject활성탄-
dc.subject탄소중립-
dc.subject수분 확산-
dc.subject에너지 하베스팅-
dc.subject전 기이중층-
dc.subject.ddc631-
dc.titlePerformance Evaluation of a Moisture Diffusion Energy Harvester Fabricated with Activated Carbon Derived from Biomass Resources-
dc.title.alternative바이오매스 유래 활성탄으로 제조된 수분 확산 에너지 하베스팅 장치의 성능 평가-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthor김사명-
dc.contributor.department국제농업기술대학원 국제농업기술학과-
dc.description.degree석사-
dc.date.awarded2021-08-
dc.contributor.major그린에코시스템엔지니어링-
dc.identifier.uciI804:11032-000000166544-
dc.identifier.holdings000000000046▲000000000053▲000000166544▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share