Browse

Voltage and Retention Storage Allocation Problems for SRAMs and Power Gated Circuits
정적 램 및 파워 게이트 회로에 대한 전압 및 보존용 공간 할당 문제

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
김태환
Advisor
김태환
Issue Date
2021
Publisher
서울대학교 대학원
Keywords
SRAMon-chip monitoringprocess variationpower gatingstate retentionleakage power정적 램온-칩 모니터링공정 변이파워 게이팅상태 보존누설 전력
Description
학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2021.8. 김태환.
Abstract
칩의 저전력 동작은 중요한 문제이며, 공정이 발전하면서 그 중요성은 점점 커지고 있다. 본 논문은 칩을 구성하는 정적 램(SRAM) 및 로직(logic) 각각에 대해서 저전력으로 동작시키는 방법론을 논한다.
우선, 본 논문에서는 칩을 문턱 전압 근처의 전압(NTV)에서 동작시키고자 할 때 모니터링 회로의 측정을 통해 칩 내의 모든 SRAM 블록에서 동작 실패가 발생하지 않는 최소 동작 전압을 추론하는 방법론을 제안한다. 칩을 NTV 영역에서 동작시키는 것은 에너지 효율성을 증대시킬 수 있는 매우 효과적인 방법 중 하나이지만 SRAM의 경우 동작 실패 때문에 동작 전압을 낮추기 어렵다. 하지만 칩마다 영향을 받는 공정 변이가 다르므로 최소 동작 전압은 칩마다 다르며, 모니터링을 통해 이를 추론해낼 수 있다면 칩별로 SRAM에 서로 다른 전압을 인가해 에너지 효율성을 높일 수 있다. 본 논문에서는 다음과 같은 과정을 통해 이 문제를 해결한다: (1) 디자인 인프라 설계 단계에서는 SRAM의 최소 동작 전압을 추론하고 칩 생산 단계에서는 SRAM 모니터의 측정을 통해 전압을 인가하는 방법론을 제안한다; (2) 칩의 SRAM 비트셀(bitcell)과 주변 회로를 포함한 SRAM 블록들의 공정 변이를 모니터링할 수 있는 SRAM 모니터와 SRAM 모니터에서 모니터링할 대상을 정의한다; (3) SRAM 모니터의 측정값을 이용해 같은 칩에 존재하는 모든 SRAM 블록에서 목표 신뢰수준 내에서 읽기, 쓰기, 및 접근 동작 실패가 발생하지 않는 최소 동작 전압을 추론한다. 벤치마크 회로의 실험 결과는 본 논문에서 제안한 방법을 따라 칩별로 SRAM 블록들의 최소 동작 전압을 다르게 인가할 경우, 기존 방법대로 모든 칩에 동일한 전압을 인가하는 것 대비 수율은 같은 수준으로 유지하면서 SRAM 비트셀 배열의 전력 소모를 감소시킬 수 있음을 보인다.
두 번째로, 본 논문에서는 파워 게이트 회로에서 기존의 보존용 공간 할당 방법들이 지니고 있는 문제를 해결하고 누설 전력 소모를 더 줄일 수 있는 방법론을 제안한다. 기존의 보존용 공간 할당 방법은 멀티플렉서 피드백 루프가 있는 모든 플립플롭에는 무조건 보존용 공간을 할당해야 해야 하기 때문에 다중 비트 보존용 공간의 장점을 충분히 살리지 못하는 문제가 있다. 본 논문에서는 다음과 같은 방법을 통해 보존용 공간을 최소화하는 문제를 해결한다: (1) 보존용 공간 할당 과정에서 멀티플렉서 피드백 루프를 무시할 수 있는 조건을 제시하고, (2) 해당 조건을 이용해 멀티플렉서 피드백 루프가 있는 플립플롭이 많이 존재하는 회로에서 보존용 공간을 최소화한다; (3) 추가로, 플립플롭에 이미 할당된 보존용 공간 중 일부를 제거할 수 있는 조건을 찾고, 이를 이용해 보존용 공간을 더 감소시킨다. 벤치마크 회로의 실험 결과는 본 논문에서 제안한 방법론이 기존의 보존용 공간 할당 방법론보다 더 적은 보존용 공간을 할당하며, 따라서 칩의 면적 및 전력 소모를 감소시킬 수 있음을 보인다.
Low power operation of a chip is an important issue, and its importance is increasing as the process technology advances. This dissertation addresses the methodology of operating at low power for each of the SRAM and logic constituting the chip.
Firstly, we propose a methodology to infer the minimum operating voltage
at which SRAM failure does not occur in all SRAM blocks in the chip operating on near threshold voltage (NTV) regime through the measurement of a monitoring circuit. Operating the chip on NTV regime is one of the most effective ways to increase energy efficiency, but in case of SRAM, it is difficult to lower the operating voltage because of SRAM failure. However, since the process variation on each chip is different, the minimum operating voltage is also different for each chip. If it is possible to infer the minimum operating voltage of SRAM blocks of each chip through monitoring, energy efficiency can be increased by applying different voltage. In this dissertation, we propose a new methodology of resolving this problem. Specifically, (1) we propose to infer minimum operation voltage of SRAM in design infra development phase, and assign the voltage using measurement of SRAM monitor in silicon production phase; (2) we define a SRAM monitor and features to be monitored that can monitor process variation on SRAM blocks including SRAM bitcell and peripheral circuits; (3) we propose a new methodology of inferring minimum operating voltage of SRAM blocks in a chip that does not cause read, write, and access failures under a target confidence level. Through experiments with benchmark circuits, it is confirmed that applying different voltage to SRAM blocks in each chip that inferred by our proposed methodology can save overall power consumption of SRAM bitcell array compared to applying same voltage to SRAM blocks in all chips, while meeting the same yield target.
Secondly, we propose a methodology to resolve the problem of the conventional retention storage allocation methods and thereby further reduce leakage power consumption of power gated circuit. Conventional retention storage allocation methods have problem of not fully utilizing the advantage of multi-bit retention storage because of the unavoidable allocation of retention storage on flip-flops with mux-feedback loop. In this dissertation, we propose a new methodology of breaking the bottleneck of minimizing the state retention storage. Specifically, (1) we find a condition that mux-feedback loop can be disregarded during the retention storage allocation; (2) utilizing the condition, we minimize the retention storage of circuits that contain many flip-flops with mux-feedback loop; (3) we find a condition to remove some of the retention storage already allocated to each of flip-flops and propose to further reduce the retention storage. Through experiments with benchmark circuits, it is confirmed that our proposed methodology allocates less retention storage compared to the state-of-the-art methods, occupying less cell area and consuming less power.
Language
eng
URI
https://hdl.handle.net/10371/178743

https://dcollection.snu.ac.kr/common/orgView/000000166642
Files in This Item:
Appears in Collections:
College of Music (음악대학)Dept. of Music (음악과)Theses (Master's Degree_음악과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse