Publications

Detailed Information

The effect of the electron-donor ability on the OLED efficiency of twisted donor-acceptor type emitters

Cited 0 time in Web of Science Cited 4 time in Scopus
Authors

Yang, Dongwook; Kim, Jae-Min; Huh, Jin-Suk; Kim, Jang-Joo; Hong, Jong-In

Issue Date
2021-08
Publisher
Elsevier B.V.
Citation
Organic Electronics, Vol.95, p. 106187
Abstract
Two twisted donor-acceptor (D-A) chemical structures, CCDMB and PCDMB, were developed as a new class of thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). Two emitters consist of 3-substituted carbazole as a first donor and trivalent boron as an electron acceptor in common, and carbazole and phenoxazine as second donors with different electron donor ability. While PCDMB with a strong phenoxazine donor decreased the lowest singlet excited state (S1) level and thus showed a small singlet-triplet energy difference (ΔEST) value of 0.13 eV, resulting in effective reverse intersystem crossing (RISC), however, CCDMB with a weak donor showed a large ΔEST value of 0.21 eV. Efficient triplet harvesting of PCDMB was confirmed by a delayed component in transient PL decay curves of 25 wt% PCDMB-doped bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO) films. OLED devices with a CCDMB emitter showed deep-blue emission with Commission Internationale de lÉclairage (CIE) of (0.16, 0.12) but a low maximum EQE of 5.5%, indicative of insufficient triplet harvesting. PCDMB-based devices showed green emission with CIE of (0.21, 0.45) and a high maximum EQE of 22.3%. Our study revealed the effect of the electron donor ability of structurally similar emitters on ΔEST values, triplet harvesting, and device efficiency.
ISSN
1566-1199
URI
https://hdl.handle.net/10371/179921
DOI
https://doi.org/10.1016/j.orgel.2021.106187
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share