Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology

Cited 10 time in Web of Science Cited 11 time in Scopus

Kim, Sang Guen; Kwon, Jun; Giri, Sib Sankar; Yun, Saekil; Kim, Hyoun Joong; Kim, Sang Wha; Kang, Jung Woo; Lee, Sung Bin; Jung, Won Joon; Park, Se Chang

Issue Date
BioMed Central
Microbial Cell Factories, Vol.20 No.1, p. 56
BackgroundAntibiotic-resistant bacteria have emerged as a serious problem; bacteriophages have, therefore, been proposed as a therapeutic alternative to antibiotics. Several authorities, such as pharmacopeia, FDA, have confirmed their safety, and some bacteriophages are commercially available worldwide. The demand for bacteriophages is expected to increase exponentially in the future; hence, there is an urgent need to mass-produce bacteriophages economically. Unlike the replication of non-lytic bacteriophages, lytic bacteriophages are replicated by lysing host bacteria, which leads to the termination of phage production; hence, strategies that can prolong the lysis of host bacteria in bacteria-bacteriophage co-cultures, are required.ResultsIn the current study, we manipulated the inoculum concentrations of Staphylococcus aureus and phage pSa-3 (multiplicity of infection, MOI), and their energy sources to delay the bactericidal effect while optimizing phage production. We examined an increasing range of bacterial inoculum concentration (2x10(8) to 2x10(9) CFU/mL) to decrease the lag phase, in combination with a decreasing range of phage inoculum (from MOI 0.01 to 0.00000001) to delay the lysis of the host. Bacterial concentration of 2x10(8) CFU/mL and phage MOI of 0.0001 showed the maximum final phage production rate (1.68x10(10) plaque forming unit (PFU)/mL). With this combination of phage-bacteria inoculum, we selected glycerol, glycine, and calcium as carbon, nitrogen, and divalent ion sources, respectively, for phage production. After optimization using response surface methodology, the final concentration of the lytic Staphylococcus phage was 8.63x10(10)9.71x10(9) PFU/mL (5.13-fold increase).Conclusions Therefore, Staphylococcus phage pSa-3 production can be maximized by increasing the bacterial inoculum and reducing the seeding phage MOI, and this combinatorial strategy could decrease the phage production time. Further, we suggest that response surface methodology has the potential for optimizing the mass production of lytic bacteriophages.
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Veterinary Medicine (수의과대학)Dept. of Veterinary Medicine (수의학과)Journal Papers (저널논문_수의학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.