Publications

Detailed Information

Wave-Structure Interaction Analysis of a Submerged Floating Tunnel : 파랑하중을 고려한 부유식 수중 터널의 유탄성 거동 해석

DC Field Value Language
dc.contributor.advisor김호경-
dc.contributor.author김수민-
dc.date.accessioned2022-06-22T07:19:51Z-
dc.date.available2022-06-22T07:19:51Z-
dc.date.issued2022-
dc.identifier.other000000171323-
dc.identifier.urihttps://hdl.handle.net/10371/182877-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000171323ko_KR
dc.description학위논문(석사) -- 서울대학교대학원 : 공과대학 건설환경공학부, 2022.2. 김호경.-
dc.description.abstractThis study performs wave-structure interaction analysis of a submerged floating tunnel (SFT) with mooring lines and investigates the effect of structure parameters on dynamic responses under wave loads. Airy wave theory and Morisons Equation are used to calculate the wave force. The numerical model of SFT is verified by comparing it with the dynamic response of the experimental model studied by Oh et al. The effect of key design parameters (Buoyancy weight ratio, clearance, tether incline angle) on the performance of SFT under wave load is presented. Even though the SFT natural frequency and wave frequency were not close, Structure response amplification was observed for a particular range of the parameters. It was found that this amplification is due to the time-dependent fluctuating natural frequency of SFT. The results indicate that fluctuating natural frequency should be evaluated properly since severe displacement can occur in such a specific situation.-
dc.description.abstract본 연구에서는 계류선이 있는 부유식 수중 터널의 유탄성 거동 해석을 수행하였고, 주요 매개변수가 파랑하중에 의한 동적 응답에 미치는 영향을 평가하였다. 파력을 산정하기 위해서는 에어리 선형파 이론과 모리슨 방정식이 사용되었다. 또한, 부유식 수중 터널의 수치 모델은 선행 연구의 조파수조 실험 결과와 비교함으로써 검증하였다. 파랑 하중이 가해질 때, 수중 터널의 주요 설계 변수인 부력-중량비, 터널의 흘수, 계류선의 경사각이 동적 거동에 미치는 영향이 평가되었다. 결과적으로, 부유식 수중 터널의 고유진동수와 파진동수가 근접하지 않았음에도 불구하고, 매개변수의 특정 범위에 대해 구조물 응답 증폭 현상이 관찰되었다. 이 증폭 현상은 P-delta 효과에 의해 시간에 따라 변동하는 고유 진동수로 인한 것으로 밝혀졌다.-
dc.description.tableofcontentsABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objective and Layout 4
CHAPTER 2 DESCRIPTION OF NUMERICAL MODEL 5
2.1 Theoretical background 5
2.1.1 Airy linear wave theory 5
2.1.2 Morison's Equation 9
2.2 Calculation of hydrodynamic load 10
2.3 Governing Equation of wave-structure interaction 13
2.4 Description of numerical model 16
CHAPTER 3 VERIFICATION OF NUMERICAL ANALYSIS 19
3.1 Verification of wave force application 19
3.2 Verification of wave-structure interaction 22
CHAPTER 4 PARAMETER STUDY 28
4.1 Parameter's range selection 28
4.1.1 Considered wave cases 28
4.1.2 The considered range for buoyancy weight ratio 32
4.1.3 The considered range for clearance 33
4.1.4 The considered range for tether incline angle 34
4.2 Wave characteristics case study 36
4.3 Buoyancy-weight ratio case study 38
4.4 Clearance case study 42
4.5 Tether incline angle case study 46
CHAPTER 5 CONCLUSION 48
REFERENCE 50
국 문 초 록 53
-
dc.format.extentvi ,53-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectSubmerged floating tunnel, Wave-structure interaction, Buoyancy-weight ratio, Clearance, Response amplification-
dc.subject.ddc624-
dc.titleWave-Structure Interaction Analysis of a Submerged Floating Tunnel-
dc.title.alternative파랑하중을 고려한 부유식 수중 터널의 유탄성 거동 해석-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorSoomin Kim-
dc.contributor.department공과대학 건설환경공학부-
dc.description.degree석사-
dc.date.awarded2022-02-
dc.identifier.uciI804:11032-000000171323-
dc.identifier.holdings000000000047▲000000000054▲000000171323▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share