Publications

Detailed Information

State-of-the-art silicone molded models for simulation of arterial switch operation: Innovation with parting-and-assembly strategy

DC Field Value Language
dc.contributor.authorPeel, Brandon-
dc.contributor.authorLee, Whal-
dc.contributor.authorHussein, Nabil-
dc.contributor.authorYoo, Shi-Joon-
dc.date.accessioned2022-06-23T03:58:08Z-
dc.date.available2022-06-23T03:58:08Z-
dc.date.created2022-05-12-
dc.date.issued2022-04-
dc.identifier.citationJTCVS Techniques, Vol.12, pp.132-142-
dc.identifier.issn2666-2507-
dc.identifier.urihttps://hdl.handle.net/10371/183689-
dc.description.abstract© 2022Background: Three-dimensional (3D) printed models are widely accepted for use in training of various surgical procedures for congenital heart disease; however, their physical properties have been considered suboptimum for procedures. We created silicone molded models produced using a novel parting and assembly strategy and compared their suitability for hands-on training with that of conventional 3D printed models. Methods: Computed tomography imaging data from 2 patients with transposition of the great arteries were used. The heart was divided into multiple parts (atria, ventricles, great arteries, coronary arteries, and valves), and molds of each part were created. The parts reproduced by silicone molding were assembled using an adhesive agent. In an online course, 2 silicone molded models and 1 3D printed model were used for training of 34 surgeons. A questionnaire was distributed to these surgeons aimed at assessing the suitability of the models for the arterial switch operation (ASO). Results: The silicone molded models showed excellent anatomic detail, high elasticity, and high resistance to tearing. The cost per model, based on the production of 50 models, was slightly higher for the silicone molded models compared with the 3D printed models. All 26 surgeons who completed the questionnaire reported that the silicone molded models provided sufficient anatomic information, but only 19% said the same for the 3D printed models. All surgeons also considered the silicone models to be realistic when passing a needle, cutting vessels, suturing, and excision of the coronary buttons, as opposed to <46% for the 3D printed models. Conclusions: Silicone molding of models for the ASO is feasible by applying a parting and assembly strategy. Silicone molded models provide excellent physical properties that are far superior to those of 3D printed models for surgical simulation.-
dc.language영어-
dc.publisherElsevier Inc.-
dc.titleState-of-the-art silicone molded models for simulation of arterial switch operation: Innovation with parting-and-assembly strategy-
dc.typeArticle-
dc.identifier.doi10.1016/j.xjtc.2021.12.009-
dc.citation.journaltitleJTCVS Techniques-
dc.identifier.wosid000793146000034-
dc.identifier.scopusid2-s2.0-85124477445-
dc.citation.endpage142-
dc.citation.startpage132-
dc.citation.volume12-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorLee, Whal-
dc.type.docTypeArticle-
dc.description.journalClass1-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share