Publications

Detailed Information

Manganese Oxide Nanozyme-Doped Diatom for Safe and Efficient Treatment of Peri-Implantitis

Cited 5 time in Web of Science Cited 8 time in Scopus
Authors

Lee, Eun-Hyuk; Lee, Sang-Woo; Seo, Yongbeom; Deng, Yu-Heng; Lim, Young-Jun; Kwon, Ho-Beom; Park, Kyungpyo; Kong, Hyunjoon; Kim, Myung-Joo

Issue Date
2022-06
Publisher
American Chemical Society
Citation
ACS Applied Materials and Interfaces, Vol.14 No.24, pp.27634-27650
Abstract
Peri-implantitis is a major cause of dental implant failure. Bacterial biofilm contamination on the implant induces surrounding bone resorption and soft tissue inflammation, leading to severe deterioration of oral health. However, conventional biofilm removal procedures, such as mechanical decontamination and antiseptic application, are not effective enough to induce reosseointegration on decontaminated implant surfaces. This is due to (1) incomplete decontamination of the biofilm from inaccessible areas and (2) physicochemical alteration of implant surfaces caused by decontamination procedures. Herein, a safe and effective therapeutic approach for peri-implantitis is developed, which involves decontamination of implant-bound biofilms using the kinetic energy of microsized oxygen bubbles generated from the catalytic reaction between hydrogen peroxide (H2O2) and manganese oxide (MnO2) nanozyme sheet-doped silica diatom microparticles (Diatom Microbubbler, DM). Rapidly moving microsized DM particles are able to penetrate narrow spaces between implant screws, exerting just the right amount of force to entirely destroy biofilms without harming the surrounding mucosa or implant surfaces, as opposed to conventional antiseptics such as chlorhexidine or 3% H2O2 when used alone. Consequently, decontamination with DM facilitates successful reosseointegration on the peri-implantitis-affected implant surface. In summary, our new DM-based therapeutic approach will become a promising alternative to resolve clinically challenging aspects of peri-implantitis.
ISSN
1944-8244
URI
https://hdl.handle.net/10371/184513
DOI
https://doi.org/10.1021/acsami.2c05166
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share