Publications

Detailed Information

STEM Image Analysis Based on Deep Learning: Identification of Vacancy Defects and Polymorphs of MoS2

Cited 14 time in Web of Science Cited 15 time in Scopus
Authors

Lee, Kihyun; Park, Jinsub; Choi, Soyeon; Lee, Yangjin; Lee, Sol; Jung, Joowon; Lee, Jong-Young; Ullah, Farman; Tahir, Zeeshan; Kim, Yong Soo; Lee, Gwan-Hyoung; Kim, Kwanpyo

Issue Date
2022-06
Publisher
American Chemical Society
Citation
Nano Letters, Vol.22 No.12, pp.4677-4685
Abstract
Scanning transmission electron microscopy (STEM) is an indispensable tool for atomic-resolution structural analysis for a wide range of materials. The conventional analysis of STEM images is an extensive hands-on process, which limits efficient handling of high-throughput data. Here, we apply a fully convolutional network (FCN) for identification of important structural features of two-dimensional crystals. ResUNet, a type of FCN, is utilized in identifying sulfur vacancies and polymorph types of MoS2 from atomic resolution STEM images. Efficient models are achieved based on training with simulated images in the presence of different levels of noise, aberrations, and carbon contamination. The accuracy of the FCN models toward extensive experimental STEM images is comparable to that of careful hands-on analysis. Our work provides a guideline on best practices to train a deep learning model for STEM image analysis and demonstrates FCN's application for efficient processing of a large volume of STEM data.
ISSN
1530-6984
URI
https://hdl.handle.net/10371/184527
DOI
https://doi.org/10.1021/acs.nanolett.2c00550
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share