Publications

Detailed Information

Graphene Via Contact Architecture for Vertical Integration of vdW Heterostructure Devices

DC Field Value Language
dc.contributor.authorShin, Yongjun-
dc.contributor.authorKwon, Junyoung-
dc.contributor.authorJeong, Yeonsu-
dc.contributor.authorWatanabe, Kenji-
dc.contributor.authorTaniguchi, Takashi-
dc.contributor.authorIm, Seongil-
dc.contributor.authorLee, Gwan-Hyoung-
dc.date.accessioned2022-09-28T06:37:47Z-
dc.date.available2022-09-28T06:37:47Z-
dc.date.created2022-07-21-
dc.date.created2022-07-21-
dc.date.created2022-07-21-
dc.date.issued2022-07-
dc.identifier.citationSmall, Vol.18 No.28, p. 2200882-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://hdl.handle.net/10371/184529-
dc.description.abstractTwo-dimensional (2D) devices and their van der Waals (vdW) heterostructures attract considerable attention owing to their potential for next-generation logic and memory applications. In addition, 2D devices are projected to have high integration capabilities, while maintaining nanoscale thickness. However, the fabrication of 2D devices and their circuits is challenging because of the high precision required to etch and pattern ultrathin 2D materials for integration. Here, the fabrication of a graphene via contact architecture to electrically connect graphene electrodes (or leads) embedded in vdW heterostructures is demonstrated. Graphene via contacts comprising of edge and fluorinated graphene (FG) electrodes are fabricated by successive fluorination and plasma etching processes. A one-step fabrication process that utilizes the graphene contacts is developed for a vertically integrated complementary inverter based on n- and p-type 2D field-effect transistors (FETs). This study provides a promising method to fabricate vertically integrated 2D devices, which are essential in 2D material-based devices and circuits.-
dc.language영어-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleGraphene Via Contact Architecture for Vertical Integration of vdW Heterostructure Devices-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202200882-
dc.citation.journaltitleSmall-
dc.identifier.wosid000812873800001-
dc.identifier.scopusid2-s2.0-85132121461-
dc.citation.number28-
dc.citation.startpage2200882-
dc.citation.volume18-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorLee, Gwan-Hyoung-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordAuthorgraphene etch stop-
dc.subject.keywordAuthorgraphene via contacts-
dc.subject.keywordAuthortransition metal dichalcogenides-
dc.subject.keywordAuthorvan der Waals heterostructure devices-
dc.subject.keywordAuthorvertically integrated complementary inverters-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area 2D materials, 2D crystal structures , 2D materials and fabrication processing, Advanced battery materials, Next-generation electronic devices

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share