Publications

Detailed Information

Cell proliferation effect of deep-penetrating microcavity tandem NIR OLEDs with therapeutic trend analysis

Cited 6 time in Web of Science Cited 9 time in Scopus
Authors

Park, Yongjin; Choi, Hye-Ryung; Jeon, Yongmin; Kim, Hyuncheol; Shin, Jung Won; Huh, Chang-Hun; Park, Kyoung-Chan; Choi, Kyung-Cheol

Issue Date
2022-06
Publisher
Nature Publishing Group
Citation
Scientific Reports, Vol.12 No.1, p. 10935
Abstract
Long wavelengths that can deeply penetrate into human skin are required to maximize therapeutic effects. Hence, various studies on near-infrared organic light-emitting diodes (NIR OLEDs) have been conducted, and they have been applied in numerous fields. This paper presents a microcavity tandem NIR OLED with narrow full-width half-maximum (FWHM) (34 nm), high radiant emittance (> 5 mW/cm(2)) and external quantum efficiency (EQE) (19.17%). Only a few papers have reported on biomedical applications using the entire wavelength range of the visible and NIR regions. In particular, no biomedical application studies have been reported in the full wavelength region using OLEDs. Therefore, it is worth researching the therapeutic effects of using OLED, a next-generation light source, and analyzing trends for cell proliferation effects. Cell proliferation effects were observed in certain wavelength regions when B, G, R, and NIR OLEDs were used to irradiate human fibroblasts. The results of an in-vitro experiment indicated that the overall tendency of wavelengths is similar to that of the cytochrome c oxidase absorption spectrum of human fibroblasts. This is the first paper to report trends in the cell proliferation effects in all wavelength regions using OLEDs.
ISSN
2045-2322
URI
https://hdl.handle.net/10371/184731
DOI
https://doi.org/10.1038/s41598-022-15197-4
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share