Detailed Information

3D distributed deep learning framework for prediction of human intelligence from brain MRI

Cited 0 time in Web of Science Cited 1 time in Scopus

Han, Seung Wook; Zhang, Yan; Ren, Yihui; Posner, Jonathan; Yoo, Shin Jae; Cha, Jiook

Issue Date
The International Society for Optical Engineering
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, Vol.11317 No.11317, p. 113171X
Intelligence is a complex, multi-dimensional concept that encompasses multiple brain circuits. Understanding the underpinnings of the human brain requires not only accurate feature extraction from often noisy non-invasive brain imaging data (e.g., MRI), but also rigorous modeling of the complex relationships among distributed brain systems. In this work, we implement a highly scalable end-to-end computational learning framework – that is, a 3D deep convolutional neural network (CNN) to predict fluid intelligence scores directly from 3D brain MRI without any theory- or rule-based feature engineering. We address and overcome the challenge of processing large data (i.e. 44 GB of MRI) by using distributed deep learning techniques. The dataset originates from the Adolescent Brain Cognitive Development (ABCD) study, with 5832 subjects in the training set, 1251 in the validation set, and 1250 in the test set. The single-task ResNet50-3D model achieved mean squared errors of 0.73637 and 0.74535 respectively on the validation and test sets. The multi-task ResNet50-3D model achieved mean squared errors of 0.74418 and 0.75626 respectively on the validation and test sets. These results demonstrate not only that the prediction of fluid intelligence scores directly from structural and diffusion brain MRI is feasible but also that this scalable computational learning framework could be further developed for data-driven human neurocognitive research.
Files in This Item:
There are no files associated with this item.
Appears in Collections:


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.