Publications

Detailed Information

Concentrations of blood and urinary arsenic species and their characteristics in general Korean population

Cited 7 time in Web of Science Cited 8 time in Scopus
Authors

Choi, Jeong Weon; Song, Yoon Chae; Cheong, Nam-Yong; Lee, Kiyoung; Kim, Sunmi; Lee, Kyoung-Mu; Ji, Kyunghee; Shin, Mi-Yeon; Kim, Sungkyoon

Issue Date
2022-11
Publisher
Academic Press
Citation
Environmental Research, Vol.214, p. 113846
Abstract
Arsenic (As) exposure has been extensively studied by investigating As species (e.g., inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)) in urine, yet recent research suggests that blood could be a possible biomarker of As exposure. These investigations, however, were conducted on iAs-contaminated areas, and evidence on populations exposed to low levels of iAs is limited. This study aimed to describe the levels and distributions of As species in urine and blood, as well as to estimate methylation efficiency and related factors in the Korean population. Biological samples were obtained by the Korean Ministry of Food and Drug Safety. A total of 2025 urine samples and 598 blood samples were utilized in this study. Six As species were measured using ultra-high-performance liquid chromatography with inductively coupled plasma mass spectrometry (UPLC-ICP-MS): As(V), As(III), MMA, DMA, arsenobetaine (AsB), and arsenocholine (AsC). Mul-tiple linear regression models were used to examine the relationship between As species (concentrations and proportions) and covariates. AsB was the most prevalent species in urine and blood. The relative composition of iAs, MMA, DMA, and AsC in urine and blood differed significantly. Consumption of blue-backed fish was linked to higher levels of AsB in urine and blood. Type of drinking water and multigrain rice consumption were associated with increased iAs concentration in urine. Except for iAs, every species had correlations in urine and blood in both univariate and multivariate analyses. Adolescents and smokers presented a lower methylation efficiency (higher %MMA and lower %DMA in urine) and females presented a higher methylation efficiency (lower %iAs, %MMA, and higher %DMA in urine). In conclusion, blood iAs concentration cannot represent urinary iAs; nonetheless, different compositions of urine and blood might reflect distinct information about iAs exposure. Further investigations on exposure factors and health are needed using low-exposure groups.
ISSN
0013-9351
URI
https://hdl.handle.net/10371/186377
DOI
https://doi.org/10.1016/j.envres.2022.113846
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share