Publications

Detailed Information

뇌종양 내 물리적 특성 구현을 통한 뇌종양 약물 시험 전임상 모델 개발 : Engineering a Brain Tumor Microenvironment with Controlled Physical Features

DC Field Value Language
dc.contributor.advisor전누리-
dc.contributor.author임정은-
dc.date.accessioned2022-12-29T07:31:35Z-
dc.date.available2022-12-29T07:31:35Z-
dc.date.issued2022-
dc.identifier.other000000172642-
dc.identifier.urihttps://hdl.handle.net/10371/187613-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000172642ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 기계공학부, 2022. 8. 전누리.-
dc.description.abstract뇌종양은 가장 치명적인 유형의 암 중 하나이다. 더나아가 암세포가 뇌로 침투하는 뇌전이는 치명률을 크게 높인다. 뇌종양학 분야의 발전으로 이전에는 밝혀지지 않았던 분자단위의 특성과 뇌종양 치료를 위한 다양한 치료적 접근 방식이 밝혀지게 되었다. 이러한 발전에도 불구하고 전임상 및 임상 연구에서 표적 치료를 평가하는 방법은 여전히 매우 제한적이다. 최근 연구들을 통해 동적인 유체 흐름 및 세포외 기질과 같은 뇌종양 미세 환경의 많은 구성 요소가 연구되고 암 발병에 기여하는 것이 밝혀지고 있음에도 불구하고 이러한 구성 요소의 메커니즘은 명확하게 밝혀지지 않았다. 이 문제를 해결하기 위해 활용되는 장기칩(organ-on-a-chip) 기술은 복잡한 미세 환경의 생리를 재구성하고 그 메커니즘을 재현하는 기능을 가지고 있다. 이전 연구에서 뇌종양 미세 환경을 재구성하기 위하여 장기칩 기술이 활용되어 왔다. 그러나 뇌종양 미세환경의 생리학적 재구성에 필요한 생물학적 구성요소는 기존 장기칩 뇌종양 모델에 부재하였다. 이러한 한계를 극복하기 위하여 장기칩 기술을 사용하여 동적 유체 흐름 구현, 세포외기질 엔지니어링, 미세혈관 및 면역체계와 같은 복잡한 세포 구성 요소를 활용하여 인간 뇌종양 미세 환경의 주요 구조, 기능 및 동적 미세 환경을 구현할 수 있는 미세 유체 플랫폼을 개발하였다. 본 논문의 목적은 생리학적으로 적절한 장기칩의 뇌종양 모델을 이용하여 항암제 스크리닝을 수행하여 뇌종양 환자에게 효율적인 종양치료를 선별하는 것이 가능하게 하는 것이다.-
dc.description.abstractBrain tumors are one of the deadliest types of cancer. Furthermore, brain metastasis, which is when cancer cells infiltrate into the brain, greatly increases the fatality rate. Advances in the field of neuro-oncology have unveiled previously unappreciated molecular characterizations and diverse therapeutic approaches to treat brain tumors. Despite these advances, methods assessing targets in preclinical and clinical studies are still very limited. Although many components of the brain tumor microenvironment such as dynamic fluid flow and a unique extracellular matrix have been studied and shown to contribute to the development of cancer, the mechanisms of these components have not been clearly unveiled. To tackle this problem, organ-on-a-chip technology has the capabilities to reconstruct the physiology of complex microenvironments as well as recreate their mechanisms. Previous studies have employed the technique to recapitulate the brain tumor microenvironment. However, biological components required for the physiological reconstruction of the brain tumor microenvironment were absent in the platforms. By using organ-on-a-chip technology, we developed a microfluidic platform that can recapitulate the key structure, function, and dynamic microenvironment of the human brain tumor microenvironment, including dynamic fluid flow, an engineered extracellular matrix, and complex cellular components such as microvasculature and an immune system. The goal of this thesis dissertation is to conduct anti-cancer drug screening using our physiologically relevant brain tumor organ-on-a-chip, allowing for efficient administration of tumor treatment to brain tumor patients.-
dc.description.tableofcontentsLIST OF TABLES v
LIST OF FIGURES vi
LIST OF SYMBOLS AND ABBREVIATIONS xi
SUMMARY xiv
CHAPTER 1. Introduction 1
1.1 Background 1
1.1.1 Brain tumor microenvironment 1
1.1.2 Physical traits in brain tumor microenvironment 2
1.1.3 In vitro models of the human brain tumor microenvironment 3
1.1.4 Understanding therapeutics and immune system for brain tumor / metastasis 5
1.1.5 Needs for physiologically relevant in vitro human brain models for the understanding of neuro-oncology 5
1.2 Research Objectives 8
1.3 Thesis Outline 10
CHAPTER 2. Microvascularized pediatric brain tumor-on-a-chip for high-throughput drug screening 11
2.1 Introduction 11
2.2 Results and Discussions 16
2.2.1 Adjustment of ECM to reconstruct brain microvasculature 16
2.2.2 ECM engineering for in vivo-like culture of pediatric brain tumor tissues and its stromal cells 19
2.2.3 Microvascularized Patient Pediatric Brain Tumor Tissues in the Microfluidic Chip 23
2.2.4 Expression of a Prognostic Marker and Chemoresistance of Pediatric Brain Tumor Tissues in PVN 25
2.3 Conclusions 27
2.4 Materials and Methods 28
2.5 Supplementary Information 32
CHAPTER 3. Brain metastasis modelled in a human choroid plexus-on-a-chip with in vivo-like cerebrospinal fluid dynamics and functional capillaries – epithelium complex 40
3.1 Introduction 40
3.2 Results and Discussions 43
3.2.1 Human ChP model with in vivo-like physical traits 43
3.2.2 CSF fluid flow analysis 46
3.2.3 Recapitulation of the ChP capillary system 48
3.2.4 Reconstruction of the ChP epithelium and its function 51
3.2.5 Drug response and immune reaction in ChP tumor microenvironment 53
3.3 Conclusions 61
3.4 Materials and Methods 61
3.5 Supplementary Information 70
CHAPTER 4. Conclusions 72
4.1 Concluding Remarks 72
4.2 Challenges and Future Work 72
4.2.1 Disease modelling by adjusting the dynamic flow 73
4.2.2 Hydrogel engineering 73
4.2.3 Investigation of cellular behaviors on the epithelium 74
4.2.4 High-throughput drug screening 74
APPENDIX A. Fabrication of the human ChP-on-a-chip 75
A.1 Experimental procedure to develop the human ChP-on-a-chip 75
A.2 Experimental procedure to construct the tumor microenvironment in the human ChP-on-a-chip 79
REFERENCES
-
dc.format.extentxiv, 98-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectOrgan-on-a-chip-
dc.subjectBraintumors-
dc.subjectMicrofluidics-
dc.subjectTissueengineering-
dc.subjectMicrofabrication-
dc.subject.ddc621-
dc.title뇌종양 내 물리적 특성 구현을 통한 뇌종양 약물 시험 전임상 모델 개발-
dc.title.alternativeEngineering a Brain Tumor Microenvironment with Controlled Physical Features-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorJungeun Lim-
dc.contributor.department공과대학 기계공학부-
dc.description.degree박사-
dc.date.awarded2022-08-
dc.identifier.uciI804:11032-000000172642-
dc.identifier.holdings000000000048▲000000000055▲000000172642▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share