Publications

Detailed Information

Soluble melanin synthesis and enzyme coating using tyrosinase catalyzed reaction : 티로시나아제 반응을 이용한 수용성 멜라닌 합성 및 효소 코팅

DC Field Value Language
dc.contributor.advisor김병기-
dc.contributor.author김현-
dc.date.accessioned2022-12-29T07:48:37Z-
dc.date.available2022-12-29T07:48:37Z-
dc.date.issued2022-
dc.identifier.other000000172230-
dc.identifier.urihttps://hdl.handle.net/10371/187836-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000172230ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 화학생물공학부, 2022. 8. 김병기.-
dc.description.abstract생활성이 있는 나노 물질의 합성은 점점 가속화된 관심을 받고있는 분야이다. 나노 물질 합성은 물리, 화학, 생물적 합성법이 알려져있다. 나노물질은 일반적으로 크기, 물리화학적 성질의 조절에따라 응용 방식이 결정된다. 효소적 합성 방식은 앞선 2가지 방식에 비해서 균질하지 못한 입자의 생산 방식으로 알려져 있어, 반응에 대한 심층적인 분석이 어려웠다. 하지만 효소 촉매는 화학 촉매 에 비해 친환경적이고, 생체 분자에 온화한 반응에서의 반응을 촉매한다. 따라서 생체 분자에 가혹한 반응 조건 (온도, pH, 유기용매)에서 손상되기 쉬운 생활성 물질의 제작에 적합하다. 따라서 생활성 나노물질의 효소적 합성은 효과적인 대안을 제공할 수 있다.
우리는, 모노페놀에 기질 특이성을 가진 티로시나아제를 활용하여 정교한 조절이 가능한 생활성 나노물질을 합성하고자 하였다. 티로시나아제는 단백질 도메인 구조에 따라 최적 반응 pH가 변하며, 다양한 기질에 대한 기질특이성이 있는 효소이다. 티로시나아제의 연속적인 수산화 반응에 의해 만들어지는 카테콜과 퀴논을 활용해, 효소적인 방법으로 가교결합 물질을 합성하고, 물리화학적 성질에 대한 자세한 분석을 하였다.
Chapter 1에서, pH 5 이하 산성에서 강한 활성이 있는 Burkholderial cepacia 유래 티로시나아제를 활용해 20 nm 이하의 균질한 멜라닌 나노파티클을 합성하였다. 중성 이상 반응 환경에서 무작위적인 산화 반응에 의해 합성되는 멜라닌은 단백질과 무작위적인 가교결합 집합체를 형성했다. 하지만 산성 조건에서 카테콜의 양성자화를 유도함으로써, 무작위적인 가교결합을조절하였고, 그 결과 효소적인 방법으로 균질한 멜라닌 나노 입자를 합성할 수 있었다.
Chapter 2에서는, 효소 안정화를 도모하기 위해, 페놀 잔기가 도입된 다당류를 티로시나아제 반응으로 효소 표면에 가교 결합하여 효소-다당류 복합체를 이루었다. 효소 표면으로부터 활성 부위까지의 거리가 짧아 고분자 기질에 반응성이 높은 Streptomyces avermitilis 티로시나아제로 효소 표면 티로신, 리신 잔기와 페놀 잔기가 부착된 다당류 표면 모노페놀간의 가교결합을 생성하였다. 티로시나아제 가교반응으로 pH 8의 생체 분자 친화적한 환경에서 30분 내에 모델 효소인 트립신과 알긴산-티라민 결합체로 이루어진 복합체를 합성할 수 있었다. 그 결과, 트립신의 열 안정성, 유기 용매 안정성 및 저장 안정성이 증대되었다.
-
dc.description.abstractThe synthesis of bioactive nanomaterials is an area of increasing interest. For nanomaterials synthesis, physical, chemical, and biological synthesis methods are known. Nanomaterials are generally applied in terms of size and physicochemical properties. Compared to the previous two methods, the enzymatic synthesis method is known as a production method of non-homogeneous particles, so it was difficult to conduct an in-depth analysis of the reaction. However, enzyme catalysis is more environmentally friendly than chemical catalysis and catalyzes reactions in mild conditions. Therefore, enzymatic synthesis method is suitable for producing bioactive materials that are easily damaged in harsh conditions. Enzymatic synthesis of nanoparticles may provide an alternative approach for the synthesis of nanoparticles in an appropriate manner.
We attempted to synthesize a bioactive nanomaterial capable of fine-tuning using tyrosinase with substrate specificity to monophenol. Tyrosinase is an enzyme with substrate specificity for various monophenolic substrates, and the optimum reaction pH changes depending on the domain structure. Using catechol and quinone produced by consecutive hydroxylation of tyrosinase, crosslinked nanomaterials were synthesized by an enzymatic method, and physicochemical properties were analyzed in detail.
In Chapter 1, Burkholderia cepacia tyrosinase, which has strong activity in acidic conditions below pH 5, was used to synthesize homogeneous melanin nanoparticles of 20 nm or less. Melanin, synthesized by random oxidation in a neutral adverse reaction environment, formed an aggregate with protein. However, by inducing protonation of catechol under acidic conditions, random crosslinking was controlled, and as a result, homogeneous melanin nanoparticles were synthesized by an enzymatic method.
In Chapter 2, an enzyme-polysaccharide complex was formed by cross-linking polysaccharides introduced with a phenol moiety to the enzyme surface through a tyrosinase reaction to promote enzyme stabilization. Streptomyces avermitilis tyrosinase, which is highly reactive to polymer substrates due to its short distance from the enzyme surface to the active site, generated cross-links between tyrosine residues on the enzyme surface and monophenols on the polysaccharide surface to which phenol residues are attached. The tyrosinase cross-linking reaction was able to synthesize the model enzyme trypsin and alginate-tyramine complex in a mild environment of pH 8 within 30 minutes. As a result, trypsin's thermal stability, organic solvent stability, and storage stability were improved.
-
dc.description.tableofcontentsChapter 1. Introduction 1
1.1 Tyrosinase 2
1.1.1 Type-3 copper-containing enzyme, tyrosinase 2
1.1.2 Reaction mechanism and characteristics of tyrosinase 8
1.2 Applications of using tyrosinase as crosslinking agent 14
1.1.1 Melanin synthesis 15
1.1.2 Tyrosinase mediated crosslinking of polymer 16
1.3 Intermolecular interaction of catechol and quinone 17
1.4 Scope of thesis 22
Chapter 2. Synthesis of soluble melanin nanoparticles under acidic condition using Burkholderia cepacia tyrosinase and their characterization 24
2.1 Abstract 25
2.2 Introduction 26
2.3 Materials and methods 30
2.3.1 Materials 30
2.3.2 Plasmid construction 30
2.3.3 Expression and purification of BcTy 32
2.3.4 Synthesis of eumelanin-like nanoparticles 33
2.3.5 Instrumental analysis 34
2.3.6 Evaluation of the antioxidant activity of the soluble MNP 35
2.3.7 Synthesis of sticky eMNP-gelatin hydrogel and characterization 36
2.4 Result and discussion 38
2.4.1 Production of soluble eMNPs at acidic pH using BcTy 38
2.4.2 Understanding the synthetic mechanism of soluble eMNP-3 through chemical structure and functional group analysis 52
2.4.3 Characterization of surface zeta potential properties of eMNPs 63
2.4.4 Evaluation of antioxidant effect of soluble and ultra-small eMNP 68
2.4.5 Mussel foot protein (Mfp)-inspired sticky hydrogel in acidic condition 71
2.4.6 Synthesis of linear chain eMNPs from tyrosine derivatives 75
2.5 Conclusion 79
Chapter 3. Preparation of enzyme-polysaccharide coating by tyrosinase to improve enzyme stability 82
3.1 Abstract 83
3.2 Introduction 85
3.3 Materials and methods 90
3.3.1 Materials 90
3.3.2 Expression and purification of Streptomyces avermitilis tyrosinase (SaTy) 90
3.3.3 Synthesis of phenol-moiety conjugated polysaccharides 91
3.3.4 Fabrication of trypsin-polysaccharide coating with tyrosinase reaction using phenol-moiety conjugated polysaccharides 93
3.3.5 Fabrication of immobilized trypsin on glass bead and polysaccharide complex with tyrosinase reaction using phenol-moiety conjugated polysaccharides 93
3.3.6 Measurement of trypsin activities and enzyme kinetics 94
3.3.7 Measurement of thermal stability of enzyme and EPC 96
3.3.8 Estimation of storage stability of trypsin by accelerated stability test 96
3.3.9 Instrumental analysis 98
3.3.10 Prediction of surface potential of trypsin 99
3.4 Result and discussion 100
3.4.1 Fabrication of enzyme-polysaccharide coating (EPC) and identification of physical properties 100
3.4.2 Alg-TR synthesis reaction optimization 114
3.4.3 Enzyme kinetics of EPC according to the charge of small molecule substrates 122
3.4.4 Measurement of EPC stability increase for thermal and water-miscible organic solvents 126
3.4.5 Increased storage stability of TR by EPC formation 131
3.4.6 Enzyme-protein coating for the application to various enzymes 137
3.5 Conclusion 141
Chapter 4. Overall Conclusion and Further Suggestions 143
4.1 Overall conclusion 144
4.2 Further suggestions 146
4.2.1 Immobilization of tyrosinase enzyme to limit excessive hydroxylation product formation reaction 146
4.2.2 Melanin dyeing at pH 5 or lower to maintain the stability of animal fibers. 148
4.2.3 Establishment of polymer design strategy for universal application and biomedical use of enzyme-polymer complex with improved stability 150
References 151
Appendix 176
A.1 Introduction 177
A.2 Orobol mass production protocol 180
A.2.1 Materials 180
A.2.2 Recombinant Bacillus megaterium tyrosinase (BmTy) subculture for 40L scale large-capacity cell culture 180
A.2.3 Recombinant Bacillus megaterium tyrosinase (BmTy) subculture for 40L scale large-capacity cell culture 181
A.2.4 Cell recovery and preparation of orobol bioconversion reaction mixture 183
A.2.5 Production of orobol in 400 L scale reaction 186
A.2.6 Purificaiton of orobol 188
A.3 glycoside hydroxylation 190
A.3.1 Materials 190
A.3.2 Expression and purification of BtTy 190
A.3.3 Synthesis and analysis of ortho-hydroxylated polyphenol glycosides using BtTy 191
A.3.4 Synthesis of ortho-hydroxylated derivatives from O- and C-glycosylated polyphenols 192
References 197
국문 초록 200
-
dc.format.extentxi, 201-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectTyrosinase-
dc.subjectAcidiccondition-
dc.subjectSolublemelaninnanoparticle-
dc.subjectCrosslinking-
dc.subjectEnzyme-polysaccharidecoating-
dc.subject.ddc660.6-
dc.titleSoluble melanin synthesis and enzyme coating using tyrosinase catalyzed reaction-
dc.title.alternative티로시나아제 반응을 이용한 수용성 멜라닌 합성 및 효소 코팅-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorHyun Kim-
dc.contributor.department공과대학 화학생물공학부-
dc.description.degree박사-
dc.date.awarded2022-08-
dc.identifier.uciI804:11032-000000172230-
dc.identifier.holdings000000000048▲000000000055▲000000172230▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share