Publications

Detailed Information

The miR-15b-Smurf2-HSP27 axis promotes pulmonary fibrosis

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Seulgi Jeon; Hee Jin; Jin‑Mo Kim; Youmin Hur; Eun Joo Song; Yoon‑Jin Lee; Younghwa Na; Jaeho Cho; Yun‑Sil Lee

Issue Date
2023-01-07
Publisher
BMC
Citation
Journal of Biomedical Science, 30(1):2
Keywords
HSP27PhosphorylationmiRNAPulmonary fibrosisSmurf2Protein degradation
Abstract
Background
Heat shock protein 27 (HSP27) is overexpressed during pulmonary fibrosis (PF) and exacerbates PF; however, the upregulation of HSP27 during PF and the therapeutic strategy of HSP27 inhibition is not well elucidated.
Methods
We have developed a mouse model simulating clinical stereotactic body radiotherapy (SBRT) with focal irradiation and validated the induction of RIPF. HSP25 (murine form of HSP27) transgenic (TG) and LLC1-derived orthotropic lung tumor models were also used. Lung tissues of patients with RIPF and idiopathic pulmonary fibrosis, and lung tissues from various fibrotic mouse models, as well as appropriated cell line systems were used. Public available gene expression datasets were used for therapeutic response rate analysis. A synthetic small molecule HSP27 inhibitor, J2 was also used.
Results
HSP27 expression with its phosphorylated form (pHSP27) increased during PF. Decreased mRNA expression of SMAD-specific E3 ubiquitin-protein ligase 2 (Smurf2), which is involved in ubiquitin degradation of HSP27, was responsible for the increased expression of pHSP27. In addition, increased expression of miRNA15b was identified with decreased expression of Smurf2 mRNA in PF models. Inverse correlation between pHSP27 and Smurf2 was observed in the lung tissues of PF animals, an irradiated orthotropic lung cancer models, and PF tissues from patients. Moreover, a HSP27 inhibitor cross-linked with HSP27 protein to ameliorate PF, which was more effective when targeting the epithelial to mesenchymal transition (EMT) stage of PF.
Conclusions
Our findings identify upregulation mechanisms of HSP27 during PF and provide a therapeutic strategy for HSP27 inhibition for overcoming PF.
ISSN
1423-0127
Language
English
URI
https://hdl.handle.net/10371/189013
DOI
https://doi.org/10.1186/s12929-023-00896-5
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share