Publications

Detailed Information

Structure of the human DICER–pre-miRNA complex in a dicing state

Cited 29 time in Web of Science Cited 29 time in Scopus
Authors

Lee, Young-Yoon; Lee, Hansol; Kim, Haedong; Kim, V. NarryRoh, Soung-Hun

Issue Date
2023-03
Publisher
Nature Publishing Group
Citation
Nature, Vol.615 No.7951, pp.331-338
Abstract
Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)(1,2). Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'(3). The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5 & PRIME; terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.
ISSN
0028-0836
URI
https://hdl.handle.net/10371/189390
DOI
https://doi.org/10.1038/s41586-023-05723-3
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • School of Biological Sciences
Research Area Molecular Biology & Genetics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share