Publications

Detailed Information

Electroplated core-shell nanowire network electrodes for highly efficient organic light-emitting diodes

Cited 18 time in Web of Science Cited 21 time in Scopus
Authors

Kang, Hyungseok; Kim, Joo Sung; Choi, Seok-Ryul; Kim, Young-Hoon; Kim, Do Hwan; Kim, Jung-Gu; Lee, Tae-Woo; Cho, Jeong Ho

Issue Date
2022-01
Publisher
Springer | Korea Nano Technology Research Society
Citation
Nano Convergence, Vol.9 No.1, p. 1
Abstract
In this study, we performed metal (Ag, Ni, Cu, or Pd) electroplating of core-shell metallic Ag nanowire (AgNW) networks intended for use as the anode electrode in organic light-emitting diodes (OLEDs) to modify the work function (WF) and conductivity of the AgNW networks. This low-cost and facile electroplating method enabled the precise deposition of metal onto the AgNW surface and at the nanowire (NW) junctions. AgNWs coated onto a transparent glass substrate were immersed in four different metal electroplating baths: those containing AgNO3 for Ag electroplating, NiSO4 for Ni electroplating, Cu2P2O7 for Cu electroplating, and PdCl2 for Pd electroplating. The solvated metal ions (Ag+, Ni2+, Cu2+, and Pd2+) in the respective electroplating baths were reduced to the corresponding metals on the AgNW surface in the galvanostatic mode under a constant electric current achieved by linear sweep voltammetry via an external circuit between the AgNW networks (cathode) and a Pt mesh (anode). The amount of electroplated metal was systematically controlled by varying the electroplating time. Scanning electron microscopy images showed that the four different metals (shells) were successfully electroplated on the AgNWs (core), and the nanosize-controlled electroplating process produced metal NWs with varying diameters, conductivities, optical transmittances, and WFs. The metal-electroplated AgNWs were successfully employed as the anode electrodes of the OLEDs. This facile and low-cost method of metal electroplating of AgNWs to increase their WFs and conductivities is a promising development for the fabrication of next-generation OLEDs.
ISSN
2196-5404
URI
https://hdl.handle.net/10371/189415
DOI
https://doi.org/10.1186/s40580-021-00295-2
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share