Publications

Detailed Information

Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing

DC Field Value Language
dc.contributor.authorKim, Sung-Il-
dc.contributor.authorLee, Yeongjun-
dc.contributor.authorPark, Min-Ho-
dc.contributor.authorGo, Gyeong-Tak-
dc.contributor.authorKim, Young-Noon-
dc.contributor.authorXu, Wentao-
dc.contributor.authorLee, Hyeon-Dong-
dc.contributor.authorKim, Hobeom-
dc.contributor.authorSeo, Dae-Gyo-
dc.contributor.authorLee, Wanhee-
dc.contributor.authorLee, Tae-Woo-
dc.date.accessioned2023-03-27T00:27:28Z-
dc.date.available2023-03-27T00:27:28Z-
dc.date.created2020-03-30-
dc.date.issued2019-09-
dc.identifier.citationAdvanced Electronic Materials, Vol.5 No.9, p. 1900008-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://hdl.handle.net/10371/189761-
dc.description.abstractThe hysteretic behavior of organic-inorganic halide perovskites (OHPs) are exploited for application in neuromorphic electronics. Artificial synapses with 2D and quasi-2D perovskite are demonstrated that have a bulky organic cation (phenethylammonium (PEA)) to form structures of (PEA)(2)MA(n)(-1)Pb(n)Br(3)(n)(+1). The OHP films have morphological properties that depend on their structure dimensionality (i.e., n value), and artificial synapses fabricated from them show synaptic responses such as short-term plasticity, paired-pulse facilitation, and long-term plasticity. The operation mechanism of OHP artificial synapses are also analyzed depending on the dimensionality and it is found that quasi-2D (n = 3-5) OHP artificial synapses show much longer retention than 2D and 3D OHP counterparts. The calculated energy consumption of a 2D OHP artificial synapse (approximate to 0.7 fJ per synaptic event) is comparable to that of biological synapses (1-10 fJ per synaptic event). These OHP artificial synapses may enable development of neuromorphic electronics that use very little energy.-
dc.language영어-
dc.publisherWiley-VCH Verlag-
dc.titleDimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing-
dc.typeArticle-
dc.identifier.doi10.1002/aelm.201900008-
dc.citation.journaltitleAdvanced Electronic Materials-
dc.identifier.wosid000486206400019-
dc.identifier.scopusid2-s2.0-85063589682-
dc.citation.number9-
dc.citation.startpage1900008-
dc.citation.volume5-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorLee, Tae-Woo-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusLEAD-IODIDE-
dc.subject.keywordPlusMIGRATION-
dc.subject.keywordAuthorneuromorphic electronics-
dc.subject.keywordAuthorneuromorphic memory-
dc.subject.keywordAuthorperovskite synapses-
dc.subject.keywordAuthorquasi-2D perovskite-
dc.subject.keywordAuthorsynaptic devices-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share