Publications

Detailed Information

Revealing Structural Disorder in Hydrogenated Amorphous Silicon for a Low-Loss Photonic Platform at Visible Frequencies

Cited 67 time in Web of Science Cited 70 time in Scopus
Authors

Yang, Younghwan; Yoon, Gwanho; Park, Sunghak; Namgung, Seok Daniel; Badloe, Trevon; Nam, Ki Tae; Rho, Junsuk

Issue Date
2021-03
Publisher
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Citation
Advanced Materials, Vol.33 No.9, p. 2005893
Abstract
The high refractive index of hydrogenated amorphous silicon (a-Si:H) at optical frequencies is an essential property for the efficient modulation of the phase and amplitude of light. However, substantial optical loss represented by its high extinction coefficient prevents it from being utilized widely. Here, the bonding configurations of a-Si:H are investigated, in order to manipulate the extinction coefficient and produce a material that is competitive with conventional transparent materials, such as titanium dioxide and gallium nitride. This is achieved by controlling the hydrogenation and silicon disorder by adjusting the chemical deposition conditions. The extinction coefficient of the low-loss a-Si:H reaches a minimum of 0.082 at the wavelength of 450 nm, which is lower than that of crystalline silicon (0.13). Beam-steering metasurfaces are demonstrated to validate the low-loss optical properties, reaching measured efficiencies of 42%, 62%, and 75% at the wavelengths of 450, 532, and 635 nm, respectively. Considering its compatibility with mature complementary metal-oxide-semiconductor processes, the low-loss a-Si:H will provide a platform for efficient photonic operating in the full visible regime.
ISSN
0935-9648
URI
https://hdl.handle.net/10371/190060
DOI
https://doi.org/10.1002/adma.202005893
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share