Detailed Information

A multi-layer model for transpiration of urban trees considering vertical structure

Cited 5 time in Web of Science Cited 5 time in Scopus

Yun, Seok Hwan; Park, Chae Yeon; Kim, Eun Sub; Lee, Dong Kun

Issue Date
MDPI Open Access Publishing
Forests, Vol.11 No.11, pp.1164-19
As the intensity of the urban heat island effect increases, the cooling effect of urban trees has become important. Urban trees cool surfaces during the day via shading, increasing albedo and transpiration. Many studies are being conducted to calculate the transpiration rate; however, most approaches are not suitable for urban trees and oversimplify plant physiological processes. We propose a multi-layer model for the transpiration of urban trees, accounting for plant physiological processes and considering the vertical structure of trees and buildings. It has been expanded from an urban canopy model to accurately simulate the photosynthetically active radiation and leaf surface temperature. To evaluate how tree and surrounding building conditions affect transpiration, we simulated the transpiration of trees in different scenarios such as building height (i.e., 1H, 2H and 3H, H = 12 m), tree location (i.e., south tree and north tree in a E-W street), and vertical leaf area density (LAD) (i.e., constant density, high density with few layers, high density in middle layers, and high density in lower layers). The transpiration rate was estimated to be more sensitive to the building height and tree location than the LAD distribution. Transpiration-efficient trees differed depending on the surrounding condition and plant location. This model is a useful tool that provides guidelines on the planting of thermo-efficient trees depending on the structure or environment of the city.
Files in This Item:
There are no files associated with this item.
Appears in Collections:


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.