Publications

Detailed Information

Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics

Cited 11 time in Web of Science Cited 12 time in Scopus
Authors

Lopata, J.S.; Kang, S-G.; Cho, H-S.; Kim, C-H.; Weidner, J.W.; Shimpalee, Sirivatch

Issue Date
2021-09
Publisher
Pergamon Press Ltd.
Citation
Electrochimica Acta, Vol.390, p. 138802
Abstract
We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
ISSN
0013-4686
URI
https://hdl.handle.net/10371/190493
DOI
https://doi.org/10.1016/j.electacta.2021.138802
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share