Publications

Detailed Information

Surround Vehicle Motion Prediction Using LSTM-RNN for Motion Planning of Autonomous Vehicles at Multi-Lane Turn Intersections

DC Field Value Language
dc.contributor.authorJeong, Yonghwan-
dc.contributor.authorKim, Seonwook-
dc.contributor.authorYi, Kyongsu-
dc.date.accessioned2023-04-19T04:07:42Z-
dc.date.available2023-04-19T04:07:42Z-
dc.date.created2021-12-13-
dc.date.created2021-12-13-
dc.date.issued2020-01-
dc.identifier.citationIEEE Open Journal of Intelligent Transportation Systems, Vol.1 No.1, pp.2-14-
dc.identifier.issn2687-7813-
dc.identifier.urihttps://hdl.handle.net/10371/190545-
dc.description.abstractThis paper presents a surround vehicle motion prediction algorithm for multi-lane turn intersections using a Long Short-Term Memory (LSTM)-based Recurrent Neural Network (RNN). The motion predictor is trained using the states of subject and surrounding vehicles, which are collected by sensors mounted on an autonomous vehicle. Data on 484 vehicle trajectories were collected from real traffic situations at multi-lane turn intersections. 11,662 and 4,998 samples acquired from the vehicle trajectories were used to train and evaluate the networks, respectively. A motion planner based on Model Predictive Control (MPC) is designed to determine the longitudinal acceleration command based on the predicted states of surrounding vehicles. The future states of the subject vehicle derived by MPC is used as an input feature to reflect the interaction of subject and target vehicles in LSTM-RNN based motion predictor. The proposed algorithm was evaluated in terms of its accuracy and its effects on the motion planning algorithm based on the driving data sets. The improved prediction accuracy substantially increased safety by bounding the prediction error within the safety margin. The application results of the proposed predictor demonstrate the improved recognition timing of the preceding vehicle and the similarity of longitudinal acceleration with drivers.-
dc.language영어-
dc.publisherIEEE-
dc.titleSurround Vehicle Motion Prediction Using LSTM-RNN for Motion Planning of Autonomous Vehicles at Multi-Lane Turn Intersections-
dc.typeArticle-
dc.identifier.doi10.1109/OJITS.2020.2965969-
dc.citation.journaltitleIEEE Open Journal of Intelligent Transportation Systems-
dc.identifier.wosid000723373800002-
dc.identifier.scopusid2-s2.0-85082529208-
dc.citation.endpage14-
dc.citation.number1-
dc.citation.startpage2-
dc.citation.volume1-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorYi, Kyongsu-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusSENSOR FUSION-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorAutonomous vehicle-
dc.subject.keywordAuthorintersection driving data-
dc.subject.keywordAuthormotion prediction-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorrecurrent neural network-
dc.subject.keywordAuthorlong short-term memory-
dc.subject.keywordAuthormodel predictive control-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share