Publications
Detailed Information
Photo-oxidative stress by ultraviolet-B radiation and antioxidative defense of eckstolonol in human keratinocytes
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jang, Jiyi | - |
dc.contributor.author | Ye, Bo-Ram | - |
dc.contributor.author | Heo, Soo-Jin | - |
dc.contributor.author | Oh, Chulhong | - |
dc.contributor.author | Kang, Do-Hyung | - |
dc.contributor.author | Kim, Ji Hyung | - |
dc.contributor.author | Affan, Abu | - |
dc.contributor.author | Yoon, Kon-Tak | - |
dc.contributor.author | Choi, Young-Ung | - |
dc.contributor.author | Park, Se Chang | - |
dc.contributor.author | Han, Seunghee | - |
dc.contributor.author | Qian, Zhong-Ji | - |
dc.contributor.author | Jung, Won-Kyo | - |
dc.contributor.author | Choi, Il-Whan | - |
dc.date.accessioned | 2023-04-19T06:50:32Z | - |
dc.date.available | 2023-04-19T06:50:32Z | - |
dc.date.created | 2021-03-31 | - |
dc.date.created | 2021-03-31 | - |
dc.date.created | 2021-03-31 | - |
dc.date.created | 2021-03-31 | - |
dc.date.created | 2021-03-31 | - |
dc.date.issued | 2012-11 | - |
dc.identifier.citation | Environmental Toxicology and Pharmacology, Vol.34 No.3, pp.926-934 | - |
dc.identifier.issn | 1382-6689 | - |
dc.identifier.uri | https://hdl.handle.net/10371/190662 | - |
dc.description.abstract | Ultraviolet-B (UV-B) irradiation has been known to generate oxidative stress by increasing reactive oxygen species (ROS) in skin cells. Several naturally occurring antioxidant compounds isolated from marine algae are believed to protect against ROS. In this study, we assessed the antioxidative effect of eckstolonol isolated from Ecklonia cava against UV-B-induced ROS in human keratinocytes (HaCaTs). We investigated the effects of photo-oxidative stress by UV-B (50 mJ/cm(2)) and the antioxidative effects of eckstolonol using fluorometry, flow cytometry, microscopy, and cell viability and comet assays. UV-B irradiation decreased cell viability, which was restored in a dose-dependent manner with eckstolonol treatment (0, 5, 50, 100, and 200 mu M). Moreover, eckstolonol reduced UV-B-induced ROS, lipid peroxidation, damaged DNA levels, and cell death. These antioxidative effects seem to be due to the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Collectively, these results indicate that eckstolonol is capable of protecting keratinocytes from photo-oxidative stress. (C) 2012 Elsevier B.V. All rights reserved. | - |
dc.language | 영어 | - |
dc.publisher | Elsevier BV | - |
dc.title | Photo-oxidative stress by ultraviolet-B radiation and antioxidative defense of eckstolonol in human keratinocytes | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.etap.2012.08.003 | - |
dc.citation.journaltitle | Environmental Toxicology and Pharmacology | - |
dc.identifier.wosid | 000313463400035 | - |
dc.identifier.scopusid | 2-s2.0-84871787668 | - |
dc.citation.endpage | 934 | - |
dc.citation.number | 3 | - |
dc.citation.startpage | 926 | - |
dc.citation.volume | 34 | - |
dc.description.isOpenAccess | N | - |
dc.contributor.affiliatedAuthor | Park, Se Chang | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.subject.keywordPlus | MEDIATED DAMAGE | - |
dc.subject.keywordPlus | TRIPHLORETHOL-A | - |
dc.subject.keywordPlus | ECKLONIA-CAVA | - |
dc.subject.keywordPlus | IN-VIVO | - |
dc.subject.keywordPlus | OXYGEN | - |
dc.subject.keywordPlus | MELANOGENESIS | - |
dc.subject.keywordPlus | PHLOROTANNINS | - |
dc.subject.keywordPlus | ASSAY | - |
dc.subject.keywordAuthor | Antioxidant | - |
dc.subject.keywordAuthor | Ecklonia cava | - |
dc.subject.keywordAuthor | Eckstolonol | - |
dc.subject.keywordAuthor | Human keratinocytes | - |
dc.subject.keywordAuthor | Oxidative stress | - |
dc.subject.keywordAuthor | Ultraviolet-B | - |
- Appears in Collections:
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.