Publications

Detailed Information

Two-dimensional micro/macroscale model for intermediate-temperature solid oxide fuel cells considering the direct internal reforming of methane

DC Field Value Language
dc.contributor.authorSohn, Sangho-
dc.contributor.authorBaek, Seung Man-
dc.contributor.authorNam, Jin Hyun-
dc.contributor.authorKim, Charn-Jung-
dc.date.accessioned2023-04-19T08:48:36Z-
dc.date.available2023-04-19T08:48:36Z-
dc.date.created2018-08-28-
dc.date.issued2016-04-
dc.identifier.citationInternational Journal of Hydrogen Energy, Vol.41 No.12, pp.5582-5597-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://hdl.handle.net/10371/191185-
dc.description.abstractIn this study, a two-dimensional micro/macroscale model is developed to simulate the operation of anode-supported, planar, intermediate-temperature solid oxide fuel cells (IT-SOFCs) fed with partially reformed methane fuel. The previous micro/macroscale model for hydrogen-fueled IT-SOFCs is extended to take into account the direct internal reforming (DIR) of methane inside the porous cermet anode and the multi-component mass transport and reforming reaction heat consumption. The intrinsic reaction kinetics for steam methane reforming (SMR) at the nickel catalyst surface is fully considered based on the micro/macroscale calculation framework under the assumption of fully-developed laminar channel flow. Using the developed micro/macroscale model, a detailed investigation of the methane-fueled IT-SOFC operation is conducted, followed by parametric studies on the effects of the inlet temperature, the co- or counter-flow configuration, the air flow rate, and the cell length on performance. Copyright (C) 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.-
dc.language영어-
dc.publisherPergamon Press Ltd.-
dc.titleTwo-dimensional micro/macroscale model for intermediate-temperature solid oxide fuel cells considering the direct internal reforming of methane-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2016.01.161-
dc.citation.journaltitleInternational Journal of Hydrogen Energy-
dc.identifier.wosid000373552100019-
dc.identifier.scopusid2-s2.0-85028241009-
dc.citation.endpage5597-
dc.citation.number12-
dc.citation.startpage5582-
dc.citation.volume41-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKim, Charn-Jung-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusCOMPREHENSIVE MICROSCALE MODEL-
dc.subject.keywordPlusELECTROCHEMICAL REACTIONS-
dc.subject.keywordPlusNUMERICAL-SIMULATION-
dc.subject.keywordPlusCERMET ELECTRODES-
dc.subject.keywordPlusSTEADY-STATE-
dc.subject.keywordPlusPLANAR SOFC-
dc.subject.keywordPlusCFD MODEL-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusFLOW-
dc.subject.keywordAuthorIntermediate-temperature solid oxide fuel cells-
dc.subject.keywordAuthorAnode-supported-
dc.subject.keywordAuthorDirect internal reforming-
dc.subject.keywordAuthorSteam methane reforming-
dc.subject.keywordAuthorMicroscale/macroscale model-
dc.subject.keywordAuthorFully-developed laminar flow-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share