Publications

Detailed Information

Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal

Cited 38 time in Web of Science Cited 38 time in Scopus
Authors

Seo, J. J.; Kim, B. Y.; Kim, B. S.; Jeong, J. K.; Ok, J. M.; Kim, Jun Sung; Denlinger, J. D.; Mo, S. -K.; Kim, C.; Kim, Y. K.

Issue Date
2016-04
Publisher
Nature Publishing Group
Citation
Nature Communications, Vol.7, p. 11116
Abstract
A superconducting transition temperature (T-c) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced T-c from its bulk value of 8 K. There are two main views about the origin of the T-c enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate T-c of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum T-c, which in turn reveals the need for interfacial effects to achieve the highest T-c in one monolayer FeSe on SrTiO3.
ISSN
2041-1723
URI
https://hdl.handle.net/10371/191249
DOI
https://doi.org/10.1038/ncomms11116
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share