Publications

Detailed Information

Direct Linkage between Dimethyl Sulfide Production and Microzooplankton Grazing, Resulting from Prey Composition Change under High Partial Pressure of Carbon Dioxide Conditions

Cited 37 time in Web of Science Cited 38 time in Scopus
Authors

Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Yang, Eun Jin; Hyun, Bonggil; Kim, Ja-Myung; Noh, Jae Hoon; Kim, Miok; Kong, Bokyung; Choi, Dong Han; Choi, Su-Jin; Jang, Pung-Guk; Jeong, Hae Jin

Issue Date
2014-05
Publisher
American Chemical Society
Citation
Environmental Science and Technology, Vol.48 No.9, pp.4750-4756
Abstract
Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and similar to 2 degrees C warmer, an increase in partial pressure of carbon dioxide (pCO(2)) in seawater (160-830 ppmv pCO(2)) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO(2) on possible future oceanic DMS production were strongly linked to pCO(2)-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.
ISSN
0013-936X
URI
https://hdl.handle.net/10371/192695
DOI
https://doi.org/10.1021/es403351h
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Aquatic Microbial Ecology, Biological Oceanography, Plankton

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share