Publications

Detailed Information

Avoidance and attraction: Chemical cues influence predator-prey interactions of planktonic protists

Cited 21 time in Web of Science Cited 20 time in Scopus
Authors

Harvey, Elizabeth L.; Jeong, Hae Jin; Menden-Deuer, Susanne

Issue Date
2013-07
Publisher
American Society of Limnonogy and Oceanography
Citation
Limnology and Oceanography, Vol.58 No.4, pp.1176-1184
Abstract
We measured how predator- and prey-derived chemical cues affect swimming behaviors and encounter rates of two common phytoplankton species (Amphidinum carterae, Heterosigma akashiwo) and two heterotrophic dinoflagellate predators (Stoeckeria algicida, Gyrodiniellum shiwhaense). Using video and image analysis, the microscopic three-dimensional movement behaviors and macroscopic population distributions of the species were quantified in response to chemical cues derived from their respective predator or prey species. S. algicida preferentially feeds on H. akashiwo but displayed significant increases in swimming speed and turning rate when exposed to filtrate from either prey species. Prey cue-induced changes in predator swimming behavior resulted in an average 11% increase in encounter rate. S. algicida that respond to prey filtrate would reach their daily prey quota at a 25% lower ambient prey concentration. In contrast, G. shiwhaense, which rarely feeds and does not grow on H. akashiwo, exhibited no shifts in behavior in response to algal filtrate. Predator-derived cues from S. algicida elicited significant increases in upward motility in H. akashiwo, resulting in a shift in the prey population abundance away from the predator-derived chemical cue. These algal fleeing behaviors reduced estimated encounter rates by 4%, compared to non-fleeing behaviors. Our results provide quantitative evidence for the importance of chemical cues in modulating feeding interactions and emphasize the ramifications of individual behaviors, and modulation thereof, to population-level outcomes, including population distributions, and predation pressure.
ISSN
0024-3590
URI
https://hdl.handle.net/10371/192714
DOI
https://doi.org/10.4319/lo.2013.58.4.1176
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Aquatic Microbial Ecology, Biological Oceanography, Plankton

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share