Publications

Detailed Information

Purification and Concentration of Real World Samples Using High Capacity of Nanoelectrokinetic Devices : 대용량 나노전기수력학적 장치를 이용한 실제 시료의 정제와 농축 연구

DC Field Value Language
dc.contributor.advisor김성재-
dc.contributor.author홍성준-
dc.date.accessioned2023-06-29T01:57:25Z-
dc.date.available2023-06-29T01:57:25Z-
dc.date.issued2023-
dc.identifier.other000000176065-
dc.identifier.urihttps://hdl.handle.net/10371/193278-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000176065ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2023. 2. 김성재.-
dc.description.abstractNanochannels have special properties different from microchannels. This feature is ion selectivity in which only specific ions can pass through a nanochannel by overlapping the electric double layer (EDL) on the nanochannel wall. Due to the ion selectivity of nanochannels, when an electric field is applied to a system with nanochannels, an ion concentration polarization (ICP) which is a phenomenon of ion concentration imbalance occurs near the nanochannel. Electrokinetic systems with nanochannels have been studied in various ways in that they may remove ions or concentrate them. However, the ICP phenomenon is stable in micro/nano channels, but it is limited to research on the purification and concentration of real samples due to problems such as instability and capacity. Therefore, in this thesis, purification and concentration of actual samples was conducted by scale-up the microscale device using a 3D_printer.
First, a study on a portable peritoneal dialysis fluid reuse device was conducted in relation to the purification of actual samples. For conventional peritoneal dialysis, the patient should replace the peritoneal dialysis solution of the abdominal cavity with a clean dialysis solution after a certain period of time. Therefore, a portable peritoneal dialysis solution reuse device that does not require the patient to replace it by himself was devised by refining the peritoneal dialysis solution. In order to improve the capacitive limit of the existing PMDS-based micro/nano system device, a capacity (~10 ml/min) purification platform based on a 3D_printer was designed. The device was optimized to achieve stable purification efficiency even in a large-capacity device, and the purification possibility of an actual peritoneal dialysis solution was confirmed using this. The purification performance of peritoneal dialysis fluid and the decrease in the concentration of waste in the blood were confirmed through actual animal experiments, and the applicability of it to actual patients was confirmed.
Secondly, a high-capacity two-branch ICP platform that can be purification and concentration simultaneously was developed. In the previous studies, purification or concentration was carried out respectively. However, in this study, a two-branch device capable of purification and concentration was increased in capacity using a 3D_printer. In addition, it was confirmed that purification and concentration were performed simultaneously by optimizing the device design and experimental method to maintain stable ICP. Moreover, it was confirmed that it could be used as a platform for separating charged particles (Endosome). Therefore, it is expected that it can be used as a platform for refining and concentrating various actual samples.
-
dc.description.abstract나노 채널이 있는 전기 수력학 시스템은 이온농도분극현상(ICP)를 이용하여 이온을 제거할 수도 있고, 농축할 수도 있어서 다양하게 연구되고 있다. 하지만 ICP 현상은 마이크로/나노 채널에서는 안정적이지만 대용량화 시 불안정 하다는 점과 수처리 용량의 한계 등의 문제점으로 실제 시료의 정제 및 농축의 연구에는 제한적 이였다. 따라서 본 논문에서는 전기 수력학적 원리를 이용하여 실제 시료의 정제 및 농축을 진행하는 연구를 진행하였다.
먼저 실제 시료의 정제와 관련하여 휴대용 복막 투석액 재사용 장치에 관한 연구를 진행하였다. 기존의 복막 투석은 일정 시간 후 복강의 복막투석액을 환자 스스로 깨끗한 투석액으로 교체 해 주어야 한다. 따라서 복막투석액을 정제하여 환자가 스스로 교체 할 필요가 없는 휴대용 복막 투석액 재사용 장치를 고안하였다. 기존의 PMDS 기반의 마이크로/나노 시스템 장치가 갖는 용량적 한계를 개선하기 위하여 3D_printer를 기반으로 한 대용량(~10 ml/min) 정제 장치를 디자인 및 최적화 하였다. 동물실험을 통하여 복막투석액의 정제 성능 및 혈액 속 노폐물의 농도 감소를 확인하여, 실제 환자에게 적용가능성을 확인하였다.
다음으로는 동시에 정제 및 농축이 가능한 대용량 2분지 ICP 플랫폼을 개발하였다. 앞선 연구에서는 1분지 장치를 통하여 정제를 진행하였지만, 본 연구에서는 정제 및 농축이 동시에 가능한 2분지 장치를 3D_printer를 이용하여 대용량화 하였다. 또한 안정적인 ICP를 유지하기 위한 장치 디자인 및 실험 방법의 최적화를 진행하여 정제 및 농축이 동시에 이루어지는 것을 확인하였다. 뿐만 아니라 전하를 띈 입자(Endosome)을 분리하는 플랫폼으로도 사용 가능함을 확인하였다. 따라서 다양한 실제 샘플을 정제 및 농축하는 플랫폼으로 활용될 수 있을 것으로 기대된다.
-
dc.description.tableofcontentsChapter 1. Introduction 1
1.1. Ion-selectiviy of a Nanochannel 1
1.2. Ion Concentration Polarization 4
1.3. Mechanisms of Preconcentration 6
Chapter 2. A Portable Peritoneal Dialysis Device by Nanoelectrokinetic Dialysate Purification 8
2.1. Introduction 8
2.2. Verification of dialysate purification mechanism using micro-nanofluidic device 14
2.3. Scaling up the dialysate purifier 18
2.3.1. Design of the macro nanoelectrokinetic purifier 18
2.3.2. In-vitro closed-loop circulation of peritoneal dialysate using macro nanoelectrokinetic purifier 24
2.3.3. In-vivo closed-loop circulation of peritoneal dialysate using macro nanoelectrokinetic purifier with beagle dogs 28
2.4. Experimental Methods 33
2.4.1. Fabrication of micro nanoelectrokinetic purifier 33
2.4.2. Apparatus for micro-nanofluidic experiment 34
2.4.3. Building a macroscale device 35
2.4.4. Apparatus for macroscale experiment 36
2.4.5. In-vivo test using chronic renal failure beagle dog 37
2.5. Conclusion 39
Chapter 3. High-capacity Two-Branch ICP device capable of Purification and Concentration at the same time 40
3.1. Introduction 40
3.2. Fabrication and experimental setups 42
3.2.1. Design of high-capacity two-branch ICP device 42
3.2.2. Fabrication of high-capacity two-branch ICP device 44
3.2.3. Apparatus for high-capacity two-branch ICP device 45
3.3. Results and discussions 46
3.3.1. Verification of the purification and concentration effects according to mesh (open channel) and nafion coating 46
3.3.2. Verification of the purification and concentration effects of high-capacity two-branch ICP device using dialysate 50
3.3.3. High-capacity two-branch ICP platform for purification and concentration 51
3.4. Conclusion 53
Chapter 4. Concluding Remarks 54
Appendix 56
A. dCas9-mediated Fast Detection of Oncogenic Mutation by Non-equilibrium Nanoelectrokinetic Selective Preconcentration: Potential Application for PCR-free Liquid Biopsy 56
A.1. Introduction 56
A.2. Experimental methods 61
A.2.1. Device fabrications 61
A.2.2. Materials 63
A.2.3. Electrophoresis mobility shift assay 65
A.2.4. DNA-sgRNA-dCas9 complex reaction 66
A.2.5. Experimental apparatus 67
A.2.6. Image analysis 68
A.3. Results and discussions 69
A.3.1. Verification of dCas9-mediated oncogenic mutant detection using conventional EMSA test 69
A.3.2. Verification of dCas9-mediated oncogenic mutant detection using nanoelectrokinetic selective preconcentration 72
A.3.3. Sensitivity tests out of heterologous sample using nanoelectrokinetic selective preconcentration 76
A.3.4. Sensitivity tests out of homologous sample using nanoelectrokinetic selective preconcentration 81
A.4. Conclusion 84
Bibliography 85
Abstract in Korean 92
-
dc.format.extentix, 93-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectIon selectivity-
dc.subjectIon concentration polarization (ICP)-
dc.subjectScale-up using 3D_printer-
dc.subjectPeritoneal dialysis Liquid Refining Device-
dc.subjectHigh-capacity two-branch ICP platform-
dc.subject.ddc621.3-
dc.titlePurification and Concentration of Real World Samples Using High Capacity of Nanoelectrokinetic Devices-
dc.title.alternative대용량 나노전기수력학적 장치를 이용한 실제 시료의 정제와 농축 연구-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorSeongjun Hong-
dc.contributor.department공과대학 전기·정보공학부-
dc.description.degree박사-
dc.date.awarded2023-02-
dc.identifier.uciI804:11032-000000176065-
dc.identifier.holdings000000000049▲000000000056▲000000176065▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share