Publications

Detailed Information

Discovery of Anti-Alzheimers Disease Agent Modulating Ca2+-permeable TRPV1 Pain Receptors : Ca2+ 투과성 TRPV1 통증 수용체를 조절하는 알츠하이머성 치매 치료제 소재 발굴

DC Field Value Language
dc.contributor.advisor이기원-
dc.contributor.author김주용-
dc.date.accessioned2023-06-29T02:07:29Z-
dc.date.available2023-06-29T02:07:29Z-
dc.date.issued2023-
dc.identifier.other000000177002-
dc.identifier.urihttps://hdl.handle.net/10371/193583-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000177002ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 농업생명과학대학 농생명공학부(바이오모듈레이션전공), 2023. 2. 이기원.-
dc.description.abstract세계 보건기구 (WHO)에 따르면 전 세계적으로 5천 5백만 명 이상의 사람들이 치매를 앓고 있으며, 매년 1 천만 명 이상의 치매환자가 발생한다. 치매는 고령의 사람들에게서 주로 발병하며 전 세계적으로 고령화가 진행됨에 따라 치매의 발병률은 더 커질 것으로 예상된다. 치매의 가장 큰 증상은 인지기능 및 기억력 손상으로 치매환자가 주변 사람에게 의존하게 되게 된다. 이 때문에 치매는 치료뿐만 아니라 관리가 필요한 질병으로 이의 사회적 비용이 매우 큰 질병이다. 따라서 치매는 치매환자뿐만 아니라 주변 사람들에게도 영향을 미쳐 사회 전반적으로 큰 문제점으로 작용한다.
알츠하이머성 치매 (Alzheimers disease)는 치매에서 가장 많이 발병되는 질병으로 치매환자 중 70-80%가 알츠하이머성 치매이다. 알츠하이머성 치매는 1901년 Alois Alzheimer에 의해 발견된 이후 약 100년이 지났지만 적절한 치료법이 있지 않다. 알츠하이머성 치매환자의 뇌에서 Amyloid-β와 p-tau의 양이 정상사람보다 많다는 것이 알려짐에 따라 Amyloid-β와 p-tau는 알츠하이머성 치매의 진단 기준으로 사용되어왔다.
현재 알츠하이머성 치매의 발병 이유는 명확하지는 않지만 2가지 유력한 가설이 있다. Amyloid-β와 p-tau 가설로서 이 2가지 가설은 Amyloid-β와 p-tau가 쌓여감에 따라 독성을 유발하고 이에 뇌에서 신경세포 사멸과 염증을 일으켜 인지기능 및 기억력의 저하를 가져온다는 것이다. 이 가설에 따라 Amyloid-β와 p-tau의 항체를 개발하여 Amyloid-β와 p-tau를 제거하는 기전으로 치료제 개발 연구가 이루어졌다. Aducanumab (Aduhelmtm)은 Amyloid-β항체 치료제로2022년 FDA에서 최초로 알츠하이머성 치매 치료제 승인을 받은 치료제이다. Aducanumab에 의하여 Amyloid-β가 제거되었지만 기억력 및 인지능력 개선의 효능은 보이지 않았다.
최근 칼슘 항상성 이상이 알츠하이머성 치매의 가장 큰 원인이다는 연구가 보고되었다. 알츠하이머성 치매환자의 뇌의 칼슘 농도가 정상인 보다 높아져 있다고 알려져 있다. 칼슘은 신경 세포에서 다양한 신호와 효소 활성 등에 영향을 주며, 특히 신경세포에서 칼슘은 신경전달물질로 작용하여 기억력 형성에 매우 중요한 역할을 수행한다. 알츠하이머성 치매의 치료제로 승인 받은 memantine의 경우 칼슘 이온 통로인 N-methyl-D-aspartate (NMDA)를 저해하여 칼슘 농도를 낮추는 기전이다. 따라서 칼슘의 농도를 낮추는 것이 알츠하이머성 치매의 치료 효과를 보여준다.
The transient receptor potential vanilloid 1 (TRPV1)은 칼슘이온 통로로 말초신경계 뿐만 아니라 해마와 대뇌 등 중추신경계에도 존재한다. TRPV1은 우울증과 불안 등 신경계통에 관여하며, TRPV1 기능이 저하될 시 신경과 시냅스 가소성이 발달된다는 연구결과가 있다. 본 연구 결과에 따르면 치매 동물 모델 (3 × Tg-AD)에서 TRPV1을 유전적으로 결핍시켰을 때, 뇌의 칼슘 농도가 낮아지고 Amyloid-β와 p-tau의 생성과 신경세포사멸이 억제됨을 확인하였다. 또한 인지행동학적 실험에서 기억력과 공간 및 사물의 인지능력이 향상됨을 확인하였으며, 이의 원인이 칼슘 항상성 회복에 의한 BDNF/CREB signaling의 활성화에 의한 것임을 확인하였다.
이를 통하여 TRPV1의 길항제를 통해 칼슘 농도를 저하시키면 알츠하이머성 치매에 치료효과를 거둘 것이라 가설을 세울 수 있었다. 새로운 알츠하이머성 치매의 치료 소재를 개발하기 위하여 TRPV1의 길항제이자 시금치의 주요 성분으로 알려진 α-spinasterol를 활용하여 알츠하이머성 치매 치료 효능을 확인하고자 하였다. 그 결과 α-spinasterol을 뇌에 투여 시 기억력과 공간 및 사물의 인지능력이 향상됨을 확인하였으며, 칼슘 농도의 저하에 따른Amyloid-β와 p-tau의 생성 억제와 BDNF/CREB signaling의 활성에 따른 신경세포 사멸 억제를 확인하였다.
본 연구는 칼슘 이온 통로인TRPV1이 유전적으로 결핍되면 인지 및 기억력 향상과Amyloid-β와 p-tau의 생성이 억제되는 것을 확인하였으며, 이의 작용 기전이 칼슘 농도 저하에 의한 BDNF/CREB signaling의 활성화에 의한 것임을 밝혀내었다. 또한 TRPV1 길항제이자 시금치의 주요 성분인 α-spinasterol을 활용하여 알츠하이머성 치매 치료 효능을 확인하여 새로운 알츠하이머성 치매 치료 소재의 가능성을 확인하였다. 알츠하이머성 치매 동물 모델에서 TRPV1의 유전적 결핍을 통해 이의 역할을 규명하였으며, 길항제인 α-spinasterol를 활용하여 알츠하이머성 치매 치료 효능을 밝혀내는 통합적인 연구를 수행하였다.
-
dc.description.abstractAccording to the World Health Organization, more than 55 million people have dementia worldwide, in addition to approximately 10 million new cases annually. Dementia mainly occurs in older people, and its incidence is expected to increase with the aging of the population worldwide. Cognitive function and memory decline are typical symptoms of dementia. Therefore, patients with dementia depend on the people around them. Thus, dementia requires not only treatment but also management, and its social cost is very high. Moreover, dementia affects not only patients but also the people around them, thus affecting society.
Alzheimers disease (AD) is the most common form of dementia; 70%–80% of patients with dementia have AD. Although AD was reported by Alois Alzheimer more than 100 years ago, no proper treatment has been established. Because amyloid-β (Aβ) and phosphorylated tau (p-tau) levels are higher than normal in the brains of patients with AD, they have been used as diagnostic criteria for AD.
Currently, the cause of AD is unclear; however, two hypotheses are prominent: Aβ and p-tau. Aβ and p-tau accumulation causes toxicity, which leads to neuronal apoptosis and inflammation in the brain, resulting in cognitive function and memory deficits. According to this hypothesis, several studies on drug development have been conducted with the mechanism of removing Aβ and p-tau by developing antibodies. Aducanumab (Aduhelmtm) is an Aβ antibody drug that was approved by the Food and Drug Administration (FDA) for the first time in 2022. Aβ is removed by aducanumab, but it is not effective in improving memory and cognitive function.
Recently, studies have reported that calcium (Ca2+) dyshomeostasis is the main cause of AD. Ca2+ affects various signals and enzyme activities in nerve cells. Specifically, it functions as a neurotransmitter and plays a vital role in memory formation. Ca2+ concentration in the brains of patients with AD is higher than normal. Memantine (approved as a treatment for AD) reduces intracellular Ca2+ concentration by inhibiting the N-methyl-D-aspartate Ca2+ receptor. Accordingly, reducing Ca2+ concentration shows therapeutic effects against AD.
The transient receptor potential vanilloid 1 (TRPV1) is a Ca2+-permeable nonselective cation channel mainly expressed in the peripheral nervous system. Nevertheless, TRPV1 is expressed in the central nervous system, such as the hippocampus and cerebrum. When affecting the nervous system, it causes depression, anxiety, etc. Studies have shown that TRPV1 deficiency causes neurogenesis and synaptic plasticity.
In this study, when TRPV1 was genetically deficient in an AD mouse model (3 × Tg-AD), the Ca2+ concentration in the brain decreased, and Aβ and p-tau production and neuronal apoptosis were suppressed. TRPV1 deficiency also improved memory and cognitive function of objects and space in behavioral experiments. These beneficial effects result from activating the brain-derived neurotrophic factor/cAMP-response element binding (BDNF/CREB) signaling pathway by Ca2+ homeostasis recovery.
Through these results, lowering the Ca2+ concentration through the TRPV1 antagonist would have therapeutic effects on AD. To develop a new drug agent for AD, I tried to confirm the efficacy of treating AD by using α-spinasterol, which is a known TRPV1 antagonist and a major component of spinach. Administering α-spinasterol to the hippocampus improved the memory and cognitive function of object and space and inhibited neuronal apoptosis by activating BDNF/CREB signaling pathway through lowered Ca2+ concentration.
This study is the first to find that genetic deficiency of Ca2+-permeable TRPV1 receptor rescues memory deficits and Aβ and p-tau production and reveals that its mode of action is the activation of BDNF/CREB signaling pathway caused by decreased Ca2+ concentration. In addition, α-spinasterol, a TRPV1 antagonist and a major component of spinach, was confirmed to be an effective AD treatment. α-Spinasterol has a potential for use as a new AD drug agent. An integrated study developed a new AD drug agent from identifying the role of TRPV1 through genetic deficiency in AD mice model to revealing the efficacy of AD treatment using α-spinasterol, a TRPV1 antagonist.
-
dc.description.tableofcontentsChapter 1. Therapeutic potential of TRPV1 antagonism for the treatment of Alzheimers disease: A literature review 1
Abstract 2
1.1. Introduction 4
1.2. Dementia 8
1.3. Diagnostic Markers for AD 10
1.4. Changes in the AD Hypothesis 12
1.5. Pharmacological Mechanisms and Target Molecules of Newly Developed Drugs 13
1.5.1. AD treatment targeting neurotransmission 14
1.5.2. Amyloid-related dementia treatment status 15
1.5.3. Current status of tau-related dementia treatment 16
1.6. Strategy for the Treatment of Alzheimers Dementia: Calcium Homeostasis 18
1.7. Relationship Between Ca2+ Homeostasis and Neuronal Apoptosis 19
1.8. Status of the Target Receptors of New Drugs Related to Ca2+ Homeostasis 21
1.8.1. NMDA receptors 22
1.8.2. L-type voltage-gated calcium channel (LTCC) 22
1.8.3. N-type calcium channel (NTCC) 23
1.9. TRPV1: Therapeutic Target for AD Treatment 24
1.9.1. TRPV1 deficiency rescues cognition and memory Impairments 28
1.9.2. TRPV1 deficiency reduces Aβ and p-tau production 28
1.9.3. TRPV1 deficiency mediates neuroprotective effects via the BDNF/CREB signaling pathway 29
1.9.4. α-Spinasterol (TRPV1 antagonist), an AD therapeutic agent 30
1.10. Summary 32
1.11. References 35

Chapter 2. Ca2+-permeable TRPV1 pain receptor knockout rescues memory deficits and reduces amyloid-β and tau production in a mouse model of Alzheimers disease 51
Abstract 52
2.1. Introduction 54
2.2. Materials and methods 56
2.2.1. Transgenic animal models 56
2.2.2. Primary neuronal culture 57
2.2.3. Novel object recognition test 58
2.2.4. Contextual fear conditioning test 59
2.2.5. Morris water maze test 60
2.2.6. Fluorescence Ca2+ imaging 61
2.2.7. Immunohistochemistry 61
2.2.8. Western blot analysis 63
2.2.9. Statistical analysis 64
2.3. Results 64
2.3.1. TRPV1 deficiency improved memory and learning deficits 64
2.3.2. TRPV1 deficiency decreased the hippocampal levels of Ca2+ 71
2.3.3. TRPV1 deficiency decreased hippocampal APP/Aβ levels 74
2.3.4. TRPV1 deficiency decreased hippocampal tau and p-tau levels 78
2.3.5. Ca2+ chelator BAPTA/AM and TRPV1 antagonist capsazepine decreased Aβ, tau, and p-tau levels in primary neurons 84
2.4. Discussion 87
2.5. References 91

Chapter 3. Ca2+-permeable TRPV1 receptor deficiency mediates neuroprotective effects in a mouse model of Alzheimer's disease via the BDNF/CREB signaling pathway 101
Abstract 102
3.1. Introduction 104
3.2. Materials and methods 108
3.2.1. Transgenic animal models 108
3.2.2. Animal Dissection and Tissue Collection 109
3.2.3. TUNEL Staining 109
3.2.4. Western blot analysis 110
3.2.5. Statistical Analysis 112
3.3. Results 112
3.3.1. TRPV1 deficiency reduces neuronal apoptosis in the hippocampus of 3 × Tg-AD mice 112
3.3.2. TRPV1 deficiency increases BDNF expression levels and promotes TrkB receptor phosphorylation in the hippocampus of 3 × Tg-AD mice 116
3.3.3. TRPV1 deficiency increases the phosphorylation of ERK, Akt and CREB 119
3.3.4. TRPV1 deficiency reduces the cleavage of caspase-3 and PARP in 3 × Tg-AD mice 123
3.4. Discussion 126
3.5. References 133

Chapter 4. α-Spinasterol, Ca2+-permeable TRPV1 receptor antagonist, rescues memory deficits and reduces amyloid-β and tau pathology 143
Abstract 144
4.1. Introduction 146
4.2. Materials and methods 147
4.2.1. Animals 147
4.2.2. Drug and reagents 148
4.2.3. Primary neuronal culture 149
4.2.4. Cell viability assay 149
4.2.5. Fluorescence Ca2+ imaging 150
4.2.6. Aβ1–42 stereotaxic surgeries 150
4.2.7. Morris water maze test 151
4.2.8. Novel object recognition test 152
4.2.9. Object location test 153
4.2.10. Western blot analysis 153
4.2.11. Statistical analysis 155
4.3. Results 155
4.3.1. α-Spinasterol treatment decreases neuronal apoptosis and Ca2+ levels in primary neurons 155
4.3.2. α-Spinasterol treatment decreases Aβ and p-tau levels in primary neurons 159
4.3.3. α-Spinasterol treatment ameliorates learning and memory loss in Aβ1-42-treated mice 162
4.3.4. α-Spinasterol decreases Aβ and p-tau levels in the hippocampus of Aβ1-42-treated mice 167
4.3.5. α-Spinasterol treatment promotes the BDNF/CREB signaling pathway in the hippocampus of Aβ1-42-treated mice 170
4.4. Discussion 172
4.5. References 176

국문초록 181

Figures

Fig. 1-1. Effects of TRPV1 antagonism in the pathogenesis of Alzheimers disease 34
Fig. 2-1. Effects of TRPV1 deficiency on learning and memory in 3×Tg-AD mice 68
Fig. 2-2. Effects of TRPV1 deficiency on hippocampal Ca2+ levels in 3×Tg-AD mice 72
Fig. 2-3. Effects of TRPV1 deficiency on hippocampal levels of APP and Aβ in 3×Tg-AD mice 75
Fig. 2-4. Effects of TRPV1 deficiency on hippocampal levels of tau and p-tau in 3×Tg-AD mice 80
Fig. 2-5. Effects of BAPTA and capsazepine (CZP) on levels of Aβs, tau and p-tau in primary neurons derived from 3×Tg-AD mice 85
Fig. 3-1. Effect of TRPV1 deficiency on neuronal apoptosis in the hippocampus of WT, 3xTg-AD+/+/TRPV1+/+, 3xTg-AD+/+/TRPV1+/- and 3xTg-AD+/+/TRPV1-/- mice 114
Fig. 3-2. Effect of TRPV1 deficiency on BDNF and p-TrkB protein expression levels in the hippocampus of WT, 3xTg-AD+/+ /TRPV1+/+, 3xTg-AD+/+/TRPV1+/- and 3xTg-AD+/+/TRPV1-/- mice 118
Fig. 3-3. Effect of TRPV1 deficiency on p-Akt, p-ERK and p-CREB protein expression level in the hippocampus of WT, 3xTg-AD+/+/TRPV1+/+, 3xTg-AD+/+/TRPV1+/- and 3xTg-AD+/+/TRPV1-/- mice 121
Fig. 3-4. Effect of TRPV1 deficiency on the expression of apoptosis-related proteins in the hippocampus of WT, 3xTg-AD+/+/TRPV1+/+, 3xTg-AD+/+ /TRPV1+/- and 3xTg-AD+/+/TRPV1-/- mice 125
Fig. 3-5. Molecular pathway of neuroprotection by TRPV1 deficiency in 3xTg-AD mice 131
Fig. 4-1. Effects of α-spinasterol on neuroprotection and Ca2+ levels in primary neurons 157
Fig. 4-2. Effects of α-spinasterol on Aβ and p-tau levels in primary neurons 160
Fig. 4-3. Effects of α-spinasterol on learning and memory in Aβ1-42-treated mice 164
Fig. 4-4. Effects of α-spinasterol on hippocampal Aβ and p-tau levels in Aβ1-42-treated mice 168
Fig. 4-5. Effects α-spinasterol on the BDNF/CREB signaling in Aβ1-42-treated mice 171
Fig. 4-6. Molecular pathway of anti-AD effect through α-spinasterol in Aβ1-42-treated mice 175
-
dc.format.extentxiv, 185-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectThe transient receptor potential vanilloid 1 (TRPV1)-
dc.subjectCalcium-
dc.subjectAlzheimer’s Disease (AD)-
dc.subjectApoptosis-
dc.subjectAmyloid-β-
dc.subjectp-tau-
dc.subjectBDNF/CREB signaling pathway-
dc.subjectα-spinasterol-
dc.subject.ddc571-
dc.titleDiscovery of Anti-Alzheimers Disease Agent Modulating Ca2+-permeable TRPV1 Pain Receptors-
dc.title.alternativeCa2+ 투과성 TRPV1 통증 수용체를 조절하는 알츠하이머성 치매 치료제 소재 발굴-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorJu Yong Kim-
dc.contributor.department농업생명과학대학 농생명공학부(바이오모듈레이션전공)-
dc.description.degree박사-
dc.date.awarded2023-02-
dc.identifier.uciI804:11032-000000177002-
dc.identifier.holdings000000000049▲000000000056▲000000177002▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share