Publications

Detailed Information

Reprisal of Schima superba to Mn stress and exploration of its defense mechanism through transcriptomic analysis

DC Field Value Language
dc.contributor.authorLiaquat, Fiza-
dc.contributor.authorMunis, Muhammad Farooq Hussain-
dc.contributor.authorArif, Samiah-
dc.contributor.authorManzoor, Muhammad Aamir-
dc.contributor.authorHaroon, Urooj-
dc.contributor.authorShah, Iftikhar Hussain-
dc.contributor.authorAshraf, Muhammad-
dc.contributor.authorKim, Hyun Seok-
dc.contributor.authorChe, Shengquan-
dc.contributor.authorQunlu, Liu-
dc.date.accessioned2023-07-20T07:58:10Z-
dc.date.available2023-07-20T07:58:10Z-
dc.date.created2022-11-21-
dc.date.created2022-11-21-
dc.date.created2022-11-21-
dc.date.created2022-11-21-
dc.date.created2022-11-21-
dc.date.issued2022-10-
dc.identifier.citationFrontiers in Plant Science, Vol.13, p. 1022686-
dc.identifier.issn1664-462X-
dc.identifier.urihttps://hdl.handle.net/10371/195187-
dc.description.abstractOne of the most diverse protein families, ATP-binding cassette (ABC) transporters, play a role in disease resistance, heavy metal tolerance, and food absorption.Differentially expressed genes contribute in the investigation of plant defense mechanisms under varying stress conditions. To elucidate the molecular mechanisms involved in Mn metal stress, we performed a transcriptomic analysis to explore the differential gene expression in Schima superba with the comparison of control. A total of 79.84 G clean data was generated and 6558 DEGs were identified in response to Mn metal stress. Differentially expressed genes were found to be involved in defense, signaling pathways, oxidative burst, transcription factors and stress responses. Genes important in metal transport were more expressive in Mn stress than control plants. The investigation of cis-acting regions in the ABC family indicated that these genes might be targeted by a large variety of trans-acting elements to control a variety of stress circumstances. Moreover, genes involved in defense responses, the mitogen-activated protein kinase (MAPK) signaling and signal transduction in S. superba were highly induced in Mn stress. Twenty ABC transporters were variably expressed on 1st, 5th, and 10th day of Mn treatment, according to the qRT PCR data. Inclusively, our findings provide an indispensable foundation for an advanced understanding of the metal resistance mechanisms. Our study will enrich the sequence information of S. superba in a public database and would provide a new understanding of the molecular mechanisms of heavy metal tolerance and detoxification.-
dc.language영어-
dc.publisherFrontiers Media S.A.-
dc.titleReprisal of Schima superba to Mn stress and exploration of its defense mechanism through transcriptomic analysis-
dc.typeArticle-
dc.identifier.doi10.3389/fpls.2022.1022686-
dc.citation.journaltitleFrontiers in Plant Science-
dc.identifier.wosid000877163700001-
dc.identifier.scopusid2-s2.0-85140912292-
dc.citation.startpage1022686-
dc.citation.volume13-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKim, Hyun Seok-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusMANGANESE-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusTOLERANCE-
dc.subject.keywordAuthorManganese-
dc.subject.keywordAuthortranscriptome-
dc.subject.keywordAuthorATP Binding Cassette transporter-
dc.subject.keywordAuthorhyperccumulater-
dc.subject.keywordAuthorSchima superba-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share