Publications

Detailed Information

한국의 1982-2020년 플라스틱 동적물질흐름분석 : Dynamic Plastics Flow Analysis for Korea between 1982-2020

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

박주영; 장용철; 손민희

Issue Date
2023-03
Publisher
대한환경공학회
Citation
대한환경공학회지, Vol.45 No.3, pp.127-137
Abstract
Objectives: This study analyzed Koreas plastic flows and stocks over the past 40 years to provide a quantitative basis for the nations plastic management and circular economy. Methods: Dynamic material flow analysis was conducted to quantify plastic flows across lifecycle stages and to estimate the size of in-use stocks. Focusing on 10 resins and 7 products, the analysis was conducted between 1982 and 2020 and at a national level. Production and trade flows were mainly quantified based on statistic and literature data, while consumption and waste flows were estimated using transfer coefficients. Different from static material flow analysis, waste flows were calculated based on the products lifetime distribution functions, and the changes in in-use stocks were estimated. Results and Discussion: Between 1982 and 2020, Korea produced 237 million tons of resins and provided 242 million tons of primary plastic products after trade. Approximately 207 million tons of final products were consumed, 71.1% of which was generated as post-consumption waste and additional 3.8 million tons of waste was generated from manufacturing stage. The amount of in-use stock of plastic was estimated to be 60 million tons. Of the 151 million tons of plastic waste, 24% was landfilled, 29% was incinerated and 47% was entered into sorting and recycling facilities. After sorting and recycling, 27 million tons was estimated to be recycled into products. From 1982 to 2020, per-capita plastic consumption increased from 15 kg to 150 kg, and per-capita waste generation increased from 2 kg to 139 kg. Packaging and containers, or PP and PE represented a major share of plastic consumption as well as waste generation. On the other hand, about a half of the plastic stock was used for buildings and more than 50% of the building plastic stock was PVC. Conclusions: This study used a dynamic material flow analysis to quantify plastic flows over time, identify the composition of plastic waste flows according to resins or products, and to estimate the size of in-use stocks. Such information on the waste composition and in-use stocks would be useful to improve recycling systems and to estimate future waste flows.
ISSN
1225-5025
URI
https://hdl.handle.net/10371/195390
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share