Publications

Detailed Information

Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network

DC Field Value Language
dc.contributor.authorBae, Hyun-Jin-
dc.contributor.authorHyun, Heejung-
dc.contributor.authorByeon, Younghwa-
dc.contributor.authorShin, Keewon-
dc.contributor.authorCho, Yongwon-
dc.contributor.authorSong, Young Ji-
dc.contributor.authorYi, Seong-
dc.contributor.authorKuh, Sung-Uk-
dc.contributor.authorYeom, Jin S.-
dc.contributor.authorKim, Namkug-
dc.date.accessioned2023-10-30T02:02:58Z-
dc.date.available2023-10-30T02:02:58Z-
dc.date.created2020-05-19-
dc.date.created2020-05-19-
dc.date.created2020-05-19-
dc.date.issued2020-02-
dc.identifier.citationComputer Methods and Programs in Biomedicine, Vol.184, p. 105119-
dc.identifier.issn0169-2607-
dc.identifier.urihttps://hdl.handle.net/10371/196016-
dc.description.abstractBackground and Objective: We investigated a novel method using a 2D convolutional neural network (CNN) to identify superior and inferior vertebrae in a single slice of CT images, and a post-processing for 3D segmentation and separation of cervical vertebrae. Methods: The cervical spines of patients (N == 17, 1684 slices) from Severance and Gangnam Severance Hospitals (S/GSH) and healthy controls (N == 24, 3490 slices) from Seoul National University Bundang Hospital (SNUBH) were scanned by using various volumetric CT protocols. To prepare gold standard masks of cervical spine in CT images, each spine was segmented by using conventional image-processing methods and manually corrected by an expert. The gold standard masks were preprocessed and labeled into superior and inferior cervical vertebrae separately in the axial slices. The 2D U-Net model was trained by using the disease dataset (S/GSH) and additional validation was performed by using the healthy control dataset (SNUBH), and then the training and validation were repeated by switching the two datasets. Results: In case of the model was trained with the disease dataset (S/GSH) and validated with the healthy control (SNUBH), the mean and standard deviation (SD) of the Dice similarity coefficient (DSC), Jaccard similarity coefficient USC), mean surface distance (MSD), and Hausdorff surface distance (HSD) were 94.37%% +/- 1.45%, 89.47%% +/- 2.55%, 0.33 +/- 0.12 mm and 20.89 I 3.98 mm, and 88.67%% +/- 5.82%, 80.83%% +/- 8.09%, 1.05 +/- 0.63 mm and 29.17 +/- 19.74 mm, respectively. In case of the model was trained with the healthy control (SNUBH) and validated with the disease dataset (S/GSH), the mean and SD of DSC, JSC, MSD, and HSD were 96.23%% +/- 1.55%, 92.95%% +/- 2.58%, 0.39 +/- 0.20 mm and 16.23 +/- 6.72 mm, and 93.15%% +/- 3.09%, 87.54%% +/- 5.11%, 0.38 +/- 0.17 mm and 20.85 +/- 7.11 mm, respectively. Conclusions: The results demonstrated that our fully automated method achieved comparable accuracies with inter- and intra-observer variabilities of manual segmentation by human experts, which is time consuming. (C) 2019 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.publisherElsevier BV-
dc.titleFully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network-
dc.typeArticle-
dc.identifier.doi10.1016/j.cmpb.2019.105119-
dc.citation.journaltitleComputer Methods and Programs in Biomedicine-
dc.identifier.wosid000513169400013-
dc.identifier.scopusid2-s2.0-85073215867-
dc.citation.startpage105119-
dc.citation.volume184-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorYeom, Jin S.-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordAuthorCervical vertebrae-
dc.subject.keywordAuthorSpine CT-
dc.subject.keywordAuthorSpine segmentation-
dc.subject.keywordAuthorConvolutional neural network-
dc.subject.keywordAuthorDeep learning-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share