Publications

Detailed Information

Effect of Shape Modulation of Soft Magnetic Composite on the Electromagnetic Wave Absorbing Performance : 형상 제어된 연자성 복합체가 전자파 흡수체에 미치는 영향

DC Field Value Language
dc.contributor.advisor박종래-
dc.contributor.author장미세-
dc.date.accessioned2023-11-20T04:19:36Z-
dc.date.available2023-11-20T04:19:36Z-
dc.date.issued2023-
dc.identifier.other000000177870-
dc.identifier.urihttps://hdl.handle.net/10371/196371-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000177870ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 재료공학부, 2023. 8. 박종래.-
dc.description.abstractAdvances in wireless transmission and aerospace technologies have led to the widespread use of electromagnetic waves (EMW) in both the civil and military fields. Despite the natural convenience of wireless communication, this technology is limited by EMW interference, multipath propagation, and EMW pollution, which deteriorates the reliability of data transmission and threatens human health. Considering the employment of miniaturized electronic devices and various form factors, EMW-absorbing materials need to be flexible, light weight, and exhibit high thermal conductivity for heat dissipation of the absorbed EMW energy. These EMW functional materials presents demands in strong EMW absorption in a broadband frequency range. For absorption in the designed EMW frequency band, it is also necessary to select appropriate absorbing materials depending on the purpose.
This research aimed to investigate the relationship between complex permeability and soft magnetic materials through various shape-modulation techniques applied to FeCo alloys. Shape modulation was identified as a crucial factor in enhancing complex permeability, validated using Snoek's Law. Previous attempts at shape modulation using wet-chemical methods had limitations in achieving one-dimensional structures with securely bonded particles.
The objective was to explore the correlation between shape modulation and complex permeability, with a focus on achieving a broadband electromagnetic wave absorption material (EWAM) and identifying optimal structures for maximum loading in composites. Strategies were employed to enhance initial permeability and the ferromagnetic resonance frequency (fFMR) by considering Snoek's limit. Additionally, shape modulation of FeCo alloys was utilized to mitigate high viscosity in nanomaterial fillers for EW absorbing composites while retaining high complex permeability. By incorporating BN nanoparticles, the complex permittivity and absorbing performance of shape-modulated FeCo electromagnetic wave absorbing composites were regulated. Among the examined structures, FeCo nanobelts exhibited the highest initial permeability and fFMR, followed by FeCo nanochains and FeCo hollow-spheres.
Part I offers a comprehensive overview of electromagnetic wave (EW) absorbing materials, highlighting a critical technique called shape modulation to improve initial permeability, as well as fFMR to enhance the absorbing capabilitiesPart I also addresses additional challenges encountered in the field, such as the high viscosity of nanomaterials that restricts their use as filler materials in electromagnetic wave (EW) absorbing composites. Furthermore, it discusses the limited heat dissipation capabilities of EW absorbing composites. Part II offers solutions to overcome these challenges.
Part II presents novel methods aimed at resolving the aforementioned challenges discussed in Part I. In Chapter 3, the technique of shape modulation is introduced, where FeCo alloys are transformed into a one-dimensional structure using a thermal-plasma technique, resulting in improved absorbing performance of the EWAM. Chapter 4 expands upon the shape modulation approach introduced in Chapter 3 by fabricating a two-dimensional FeCo alloy, further enhancing the material's absorbing capabilities. Additionally, Chapter 3 addresses the issue of heat dissipation by incorporating BN nanoparticles into the EW absorbing composite. Lastly, Chapter 4 employs further shape modulation to address the high viscosity of nanomaterials, achieving this by fabricating hollow-spherical FeCo alloy structures.
In summary, this study aimed to investigate the relationship between shape modulation and complex permeability, focusing on developing a broadband electromagnetic wave absorption material (EWAM) and identifying optimal structures for maximum loading in composites. Strategies were employed to enhance initial permeability and fFMR while considering Snoek's limit. This study provides valuable insights into shape modulation techniques for FeCo alloys, paving the way for advancements in electromagnetic wave absorber applications.
-
dc.description.abstract무선 전송 및 항공우주 기술의 발전으로 인해 전자기파(EMW)는 민간 및 군사 분야에서 널리 사용되고 있다. 일상에서 사용되는 무선 통신의 편리함에도 불구하고, 아직까지도 EMW의 신호 간섭 및 오염으로 인해 데이터 전송의 신뢰성이 저하되고 사람의 건강이 위협받는 문제가 발생하고 있다. 이러한 문제들을 해결하기 위해 전자파 흡수체에 대한 수요가 증가하고 있다. 소형화된 전자기기나 항공 우주 기술을 고려할 때, 전자파 흡수 재료는 유연성과 가벼운 무게를 갖추어야 하며, 흡수된 EMW 에너지의 열 전도를 위해 높은 열전도성을 나타내야 한다. 이러한 전자파 흡수 재료는 광대역 주파수 범위에서 강한 전자파 흡수를 요구한다. 설계된 전자파 주파수 대역에서의 흡수를 위해서는 목적에 따라 적절한 흡수 재료를 선택해야 한다.
본 연구는 다양한 형상 제어 기법을 적용한 FeCo 합금을 통해 복소 투자율과 연자성 소재간의 관계를 탐구하기 위해 수행되었다. 형상 제어는 Snoek의 법칙을 통해 복소 투자율을 향상시키는 중요한 요소로 확인 되었다. 이전의 연구들이 사용한 wet-chemical 방법인 FeCo 합금의 형상 제어 시도는 견고하게 결합된 입자를 가진 1차원 구조를 달성 하는 데 제한이 있었다.
이 연구의 목표는 복소 투자율을 향상시키고, ferromagnetic resonance frequency (fFMR)을 개선하기 위해 Snoeks limit을 고려하는 동안, 광대역 전자파 흡수 재료를 개발하는 것이다. 또한, 높은 점도를 가진 나노소재로 인한 복합재의 한계를 해결하기 위해 FeCo 합금의 형상 제어를 사용하면서 높은 복소 투자율 또한 유지 할 수 있었다. BN 나노입자를 첨가함으로써 형상 제어된 FeCo 전자파 흡수재의 복소 유전율과 열전도도를 조절 할수 있었다. 제조 된 합금 중에서 Co 나노벨트가 가장 높은 초기 투자율과 fFMR을 나타내었으며 그 다음으로 FeCo 나노체인과 FeCo hollow-spherical이 높은 복소 투자율을 나타냈다.
1부에서는 전자파 흡수 재료에 대한 기본적인 이론들을 정리 하였다. 그 중에서도 초기 투자율과 fFMR을 향상 시키기 위한 형상 제어라는 중요한 기법에 대해 강조한다. 또한, 나노소재의 고 점도로 인해 전자파 흡수 복합재에서 충진재료로의 사용이 제한되는 등 해당 분야에서 마주치는 추가적인 문제에 대해서도 논의 한다. 전자파 흡수체의 제한된 열 방출 능력에 대해서도 논의 한다. 2부에서는 이러한 도전을 극복하기 위한 해결책을 제시하고 있다.
2부에서는 1부에서 논의된 문제들을 해결하기 위한 새로운 방법들을 제시한다. 제3장에서는 형상 제어 기술이 소개가 되며, 이를 통해 FeCo 합금이 열플라즈마 기법을 사용하여 일차원 구조로 변형 되어 흡수체의 성능을 향상 시키는 방법이 소개 된다. 제4장에서는 제3장에서 소개된 형상제어 접근법을 확장하여 이차원의 FeCo 합금을 제조함으로써 재료의 흡수 성능을 더욱 향상 시킨다. 그리고, BN 나노입자를 전자파 흡수체에 첨가함으로써 열 방출 문제를 해결하는 방법도 제시한다. 마지막으로, 제4장에서는 고점도 나노소재의 문제에 대응하기 위해 hollow한 구조를 가진 구형 FeCo 합금을 제조하는 추가적인 형상 제어 방법을 제시한다.
요약하면, 이 연구는 형상 제어와 복소 투자율 간의 관계를 조사하고, 광대역 전자파 흡수 재료를 개발하며, 복합체에서 사용될 수 있는 최적의 입자 구조를 제조하기 위한 가이드라인을 제시하였다. Snoeks limit을 고려하여 초기 투자율과 ffMR을 향상 시키는 전략이 적용 되었으며, 이 연구는 FeCo 합금의 형상 제어 기술에 대한 통찰력을 제공하며, 전자파 흡수체 응용 분야에서의 발전 가능성을 열어준다.
-
dc.description.tableofcontentsPart I. Background Information on Electromagnetic Wave Absorbing Materials (EWAM) 1

Chapter 1. Introduction 2
1.1. Overview of EWAMs 2
1.1.1. What are Electromagnetic Waves? 2
1.1.2. Demands and Applications for Next Generation EWAM 5
1.2. Working principles of EWAMs 8
1.2.1. EW Absorbing Material vs. EW Shielding Material 8
1.2.2. Transmission Line Theory and Impedance Matching 11
1.2.3. Magnetic and Dielectric Loss Mechanisms 14
1.2.4. Reflection Loss Calculations 18
1.2.5. Soft Magnetic Materials for Magnetic Loss in EWAMs 20
1.2.6. Aim of this Research 20
1.3. References 22

Chapter 2. Introduction to Shape-Modulated Soft Magnetic Material as EWAM 33
2.1. Introduction to Soft Magnetic Material 33
2.1.1. Ferromagnetic Resonance in Soft Magnetic Material 33
2.2. Issues of Soft Magnetic Material for EM Wave Absorbers 37
2.2.1. 1st Issue: Limited Broadband Absorption 37
2.2.1.1. Limited Broadband Absorption in Soft Magnetic Materials 37
2.2.1.2. Why Do We Need Broadband EW Absorbers? 41
2.2.1.3. For broadband Absorption: What can be controlled? Enhancing the Initial Permeability and Ferromagnetic Resonance Frequency 45
2.2.1.4. Theoretical Consideration of Magnetic Anisotropy 48
2.2.1.5. Snoeks Limit and Shape Anisotropy 50
2.2.1.6. Phase Diagram of FeCo and Slater-Pauling Rule 53
2.2.1.7. Shape Anisotropy of Magnetic Material 58
2.2.1.8. State-of-the-Art (SOA) of 1st Issue: Shape-Modulated FeCo Nanomaterials 60
2.2.1.9. Issues to be solved – 1st Issue 62
2.2.2. 2nd Issue: High Viscosity of Nanomaterials 64
2.2.2.1. Limited Loading Ratio of Filler Material 64
2.2.2.2. State-of-the-Art (SOA) of 2nd Issue 68
2.2.2.3. Issues to be solved – 2nd Issue 70
2.2.3. 3rd Issue: Long-time Exposure to Radiation 72
2.2.3.1. Theoretical Consideration of Thermal Dissipation 72
2.2.3.2. Issues to be solved – 3rd Issue 73
2.3. References 77

Part II. Shape-Modulated Hybrid FeCo Composite Material 85

Chapter 3. SiO2-Coated 0D-1D FeCo Nanochains 86
3.1. Introduction 86
3.1.1. Synthesis of FeCo Nanochains: Radio-Frequency Thermal Plasma 86
3.1.2. Working Principles of FeCo@SiO2 Nanochains as EWAMs 91
3.2. Experimental Section 93
3.2.1. Materials 93
3.2.2. Preparation of FeCo nano-chained particles 93
3.2.3. Synthesis of FeCo@SiO2 suing APTMS 93
3.2.4. Synthesis of FeCo@SiO2 using TEOS 94
3.2.5. Characterization 94
3.3. Results and Discussion 96
3.3.1. Structural Morphology Characterization of FeCo Nanochain 96
3.3.2. Elemental Composition and Aspect Ratio Investigation of FexCo1-x alloys 99
3.3.3. Crystallographic and Magnetic Properties FexCo1-x alloys 102
3.3.4. Electromagnetic Properties of FexCo1-x alloys: Complex Permeability and Permittivity Spectra 108
3.3.5. Structural Morphology Characterization of Fe0.6Co0.4@SiO2 Insulation 112
3.3.6. Crystallographic and Magnetic Properties Fe0.6Co0.4@SiO2 Nanochain 114
3.3.7. Electromagnetic Properties of Fe0.6Co0.4@SiO2: Complex Permeability and Permittivity Spectra 117
3.3.8. Electromagnetic Wave Absorbing Performance: Reflection Loss and Loss Tangent Calculation 121
3.3.9. Large-scale Production of FeCo/Epoxy Composite Film 128
3.4. Conclusion 130
3.5. References 136

Chapter 4. Boron Nitride Incorporated 1D-2D FeCo Nanobelts 140
4.1. Introduction 140
4.1.1. Synthesis of FeCo Nanobelts: Planetary Ball-Mill 140
4.1.2. Shape Anisotropy of FeCo Nanobelts 142
4.2. Experimental Section 145
4.2.1. Materials 145
4.2.2. Preparation of FeCo Nanochains, FeCo Nanobelts, and FCBN 145
4.2.3. Fabrication of FCBN-TPU EMW Absorbing Membrane 146
4.2.4. Characterization 147
4.3. Results and Discussion 148
4.3.1. Structural Morphology Characterization of FeCo Nanobelt and FeCo/BN Nanobelt (FCBN) 148
4.3.2. Thermal and Magnetic Properties of FeCo Nanobelts and FCBN 154
4.3.3. Electromagnetic Properties of FeCo Nanochains, Nanobelts, and FCBN 157
4.4.4. Electromagnetic Wave Absorbing Performance: Reflection Loss Calculation and Bandwidth Comparison 163
4.4.5. Electromagnetic Wave Absorbing Performance: Input Impedance and Attenuation Constant 172
4.4.6. EMW-Absorbing Mechanisms 175
4.4.7. Reliability Study 180
4.4. Conclusion 183
4.5. References 187

Chapter 5. Boron Nitride Incorporated 0D-1D@3D FeCo Nanoparticles 192
5.1. Introduction 192
5.1.1. Limitation of Loading Factor of Nano-Filler Material in EW absorbers 192
5.1.2. Synthesis of Shape-Modulated FeCo Particles: Ultrasonic Spray Pyrolysis 195
5.2. Experimental Section 199
5.2.1. Materials 201
5.2.2. Synthesis of FeCo spherical, cubic, and hollow-spherical particles via ultrasonic spray pyrolysis 199
5.2.3. Synthesis of FeCo/BN spherical, cubic, and hollow-spherical particles via ultrasonic spray pyrolysis 200
5.2.4. Fabrication of FeCo/BN/TPU EW Absorbing Composite 200
5.2.5. Characterization 201
5.3. Results and Discussion 204
5.3.1. Structural Morphology Characterization of FeCo and FeCo/BN Particles 204
5.3.2. Theoretical Consideration of Relationship Between Precursor Material and Shape Modulation 208
5.3.3. Crystallographic and Magnetic Properties of FeCo Particles 211
5.3.4. Thermal Properties of FeCo/BN Particles 214
5.3.5. Electromagnetic Properties of FeCo and FeCo/BN Particles: Complex Permeability and Permittivity Spectra 216
5.3.6. Electromagnetic Wave Absorbing Performance: Reflection Loss Calculation and EAB 220
5.3.7. Loading Factor Investigation of FeCo Nanochain, FeCo Spherical Particle, and FeCo Hollow-Spherical Particle 224
5.3.8. Bulk Density and Viscosity Measurements of FeCo Nanochain, FeCo Spherical Particle, and FeCo Hollow-Spherical Particle 227
5.4.9. Electromagnetic Properties of FeCo Hollow-Spherical Particles of 70 wt% Loading Factor 229
5.4. Conclusion 231
5.5. References 233

Part III. Conclusion 236

Chapter 6. Concluding Remarks 237

Abstract in Korean 240
-
dc.format.extentxvii, 241-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectSoft magnetic material-
dc.subjectFeCo alloy-
dc.subjectShape-modulation-
dc.subjectComplex permeability-
dc.subjectSnoek’s Limit-
dc.subjectElectromagnetic wave absorption-
dc.subject.ddc620.1-
dc.titleEffect of Shape Modulation of Soft Magnetic Composite on the Electromagnetic Wave Absorbing Performance-
dc.title.alternative형상 제어된 연자성 복합체가 전자파 흡수체에 미치는 영향-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorMi Se Chang-
dc.contributor.department공과대학 재료공학부-
dc.description.degree박사-
dc.date.awarded2023-08-
dc.identifier.uciI804:11032-000000177870-
dc.identifier.holdings000000000050▲000000000058▲000000177870▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share